1
MHT CET 2024 4th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If the angles of a triangle are in the ratio $4: 1: 1$, then the ratio of the longest side to the perimeter is

A
$1: 6$
B
$\sqrt{3}:(2+\sqrt{3})$
C
$1:(2+\sqrt{3})$
D
$2: 3$
2
MHT CET 2024 4th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Considering only the Principal values of inverse functions, the set

$$A=\left\{x \geq 0 \left\lvert\, \tan ^{-1}(2 x)+\tan ^{-1}(3 x)=\frac{\pi}{4}\right.\right\}$$

A
contains two elements.
B
contains more than two elements.
C
is an empty set.
D
is a singleton set.
3
MHT CET 2024 4th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The line L given by $\frac{x}{5}+\frac{y}{b}=1$ passes through the point $(13,32)$. The line K is parallel to line L and has the equation $\frac{x}{c}+\frac{y}{3}=1$. Then the distance between L and K is _________ units.

A
$\frac{23}{15}$
B
$\sqrt{17}$
C
$\frac{17}{\sqrt{15}}$
D
$\frac{23}{\sqrt{17}}$
4
MHT CET 2024 4th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The integral $\int_{\frac{-1}{2}}^{\frac{1}{2}}\left([x]+\log _{\mathrm{e}}\left(\frac{1+x}{1-x}\right)\right) \mathrm{d} x$, where $[x]$ represent greatest integer function, equals

A
$-\frac{1}{2}$
B
$\log _{\mathrm{c}}\left(\frac{1}{2}\right)$
C
$\frac{1}{2}$
D
$ 2 \log _{\mathrm{e}}\left(\frac{1}{2}\right)$
MHT CET Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12