Given that the slope of the tangent to a curve $y=y(x)$ at any point $(x, y)$ is $\frac{2 y}{x^2}$. If the curve passes through the centre of the circle $x^2+y^2-2 x-2 y=0$, then its equation is
If $y=\left((x+1)(4 x+1)(9 x+1) \ldots\left(\mathrm{n}^2 x+1\right)\right)^2$, then $\frac{\mathrm{dy}}{\mathrm{d} x}$ at $x=0$ is
A multiple choice examination has 5 questions. Each question has three alternative answers of which exactly one is correct. The probability, that a student will get 4 or more correct answers just by guessing, is
A wet substance in the open air loses its moisture at a rate proportional to the moisture content. If a sheet hung in the open air loses half its moisture during the first hour, then the time t , in which $99 \%$ of the moisture will be lost, is