1
MHT CET 2024 4th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Given that the slope of the tangent to a curve $y=y(x)$ at any point $(x, y)$ is $\frac{2 y}{x^2}$. If the curve passes through the centre of the circle $x^2+y^2-2 x-2 y=0$, then its equation is

A
$x \log |y|=x-1$
B
$x \log |y|=-2(x-1)$
C
$x \log |y|=2(x-1)$
D
$x^2 \log |y|=-2(x-1)$
2
MHT CET 2024 4th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $y=\left((x+1)(4 x+1)(9 x+1) \ldots\left(\mathrm{n}^2 x+1\right)\right)^2$, then $\frac{\mathrm{dy}}{\mathrm{d} x}$ at $x=0$ is

A
$\frac{\mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)}{4}$
B
$\frac{\mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)}{6}$
C
$\frac{\mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)}{2}$
D
$\frac{\mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)}{3}$
3
MHT CET 2024 4th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

A multiple choice examination has 5 questions. Each question has three alternative answers of which exactly one is correct. The probability, that a student will get 4 or more correct answers just by guessing, is

A
$\frac{10}{3^5}$
B
$\frac{17}{3^5}$
C
$\frac{13}{3^5}$
D
$\frac{11}{3^5}$
4
MHT CET 2024 4th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

A wet substance in the open air loses its moisture at a rate proportional to the moisture content. If a sheet hung in the open air loses half its moisture during the first hour, then the time t , in which $99 \%$ of the moisture will be lost, is

A
$\frac{2 \log 10}{\log 2}$
B
$\frac{\log 10}{\log 2}$
C
$\frac{3 \log 10}{\log 2}$
D
$\frac{1}{2} \frac{\log 10}{\log 2}$
MHT CET Papers
EXAM MAP