1
MHT CET 2024 4th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

$\int\left(1+x-\frac{1}{x}\right) e^{x+\frac{1}{x}} d x$ equal to

A
$(x+1) e^{x+\frac{1}{x}}+c$, (where $c$ is a constant of integration)
B
$-x e^{x+\frac{1}{x}}+c$, (where $c$ is a constant of integration)
C
$(x-1) e^{x+\frac{1}{x}}+c$, (where $c$ is a constant of integration)
D
$x e^{x+\frac{1}{x}}+c$, (where $c$ is a constant of integration)
2
MHT CET 2024 4th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The function $f(x)=\frac{\log _e(\pi+x)}{\log _e(e+x)}$ is

A
increasing on $(0, \infty)$.
B
increasing on $\left(0, \frac{\pi}{\mathrm{e}}\right)$, decreasing on $\left(\frac{\pi}{\mathrm{e}}, \infty\right)$.
C
decreasing on $(0, \infty)$.
D
decreasing on $\left(0, \frac{\pi}{\mathrm{e}}\right)$, increasing on $\left(\frac{\pi}{\mathrm{e}}, \infty\right)$
3
MHT CET 2024 4th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $y=y(x)$ be the solution of the differential equation $\sin x \frac{\mathrm{~d} y}{\mathrm{~d} x}+y \cos x=4 x, x \in(0, \pi)$. If $y\left(\frac{\pi}{2}\right)=0$, then $y\left(\frac{\pi}{6}\right)$ is equal to

A
$-\frac{4}{9} \pi^2$
B
$\frac{4}{9 \sqrt{3}} \pi^2$
C
$\frac{-8}{9 \sqrt{3}} \pi^2$
D
$-\frac{8}{9} \pi^2$
4
MHT CET 2024 4th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The value of $\mathrm{I}=\int \frac{x^2}{(\mathrm{a}+\mathrm{bx})^2} \mathrm{dx}$ is

A
$\frac{1}{b^3}\left[a+b x+2 a \log |a+b x|-\frac{a^2}{a+b x}\right]+c$, (where c is the constant of integration)
B
$\frac{1}{b^3}\left[a+b x-2 a \log |a+b x|+\frac{a^2}{a+b x}\right]+c$, (where c is the constant of integration)
C
$\frac{1}{b^3}\left[a+b x-2 a \log |a+b x|-\frac{a^2}{a+b x}\right]+c$, (where c is the constant of integration)
D
$\frac{1}{b^3}\left[a+b x+2 a \log |a+b x|+\frac{a^2}{a+b x}\right]+c$, (where c is the constant of integration)
MHT CET Papers
EXAM MAP