1
MHT CET 2024 4th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $I=\int e^{\sin \theta}\left(\log \sin \theta+\operatorname{cosec}^2 \theta\right) \cos \theta d \theta$, then $I$ is equal to

A
$\mathrm{e}^{\sin \theta}\left(\log \sin \theta+\operatorname{cosec}^2 \theta\right)+\mathrm{c}$, (where c is a constant of integration)
B
$\mathrm{e}^{\sin \theta}(\log \sin \theta+\operatorname{cosec} \theta)+\mathrm{c}$, (where c is a constant of integration)
C
$\mathrm{e}^{\sin \theta}(\log \sin \theta-\operatorname{cosec} \theta)+\mathrm{c}$, (where c is a constant of integration)
D
$\mathrm{e}^{\sin \theta}\left(\log \sin \theta-\operatorname{cosec}^2 \theta\right)+\mathrm{c}$, (where c is a constant of integration)
2
MHT CET 2024 4th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The equation of the circle which has its centre at the point $(3,4)$ and touches the line $5 x+12 y-11=0$ is

A
$x^2+y^2-6 x-8 y+9=0$
B
$x^2+y^2-6 x-8 y+25=0$
C
$x^2+y^2-6 x-8 y-9=0$
D
$x^2+y^2-6 x-8 y-25=0$
3
MHT CET 2024 4th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

A plane which is perpendicular to two planes $2 x-2 y+z=0$ and $x-y+2 z=4$, passes through $(1,-2,1)$. The distance of the plane from the point $(1,2,2)$ is

A
0 units
B
1 units
C
$\sqrt{2}$ units
D
$2 \sqrt{2}$ units
4
MHT CET 2024 4th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The value of the expression $\sqrt{3} \operatorname{cosec} 20^{\circ}-\sec 20^{\circ}$ is equal to

A
2
B
$\frac{2 \sin 20^{\circ}}{\sin 40^{\circ}}$
C
4
D
$4 \frac{\sin 20^{\circ}}{\sin 40^{\circ}}$
MHT CET Papers
EXAM MAP