1
MHT CET 2024 4th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $\left(-2-\frac{1}{3} \mathrm{i}\right)^3=\frac{x+\mathrm{i} y}{27}, \mathrm{i}=\sqrt{-1}$, where $x$ and $y$ are real numbers, then $(y-x)$ has the value

A
$-91$
B
$-85$
C
$85$
D
$91$
2
MHT CET 2024 4th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The shaded region in the following figure is the solution set of the inequations

MHT CET 2024 4th May Morning Shift Mathematics - Linear Programming Question 4 English

A
$x+2 y \leq 6,5 x+3 y \geq 15, x \leq 7, y \leq 6, x$, $y \geq 0$
B
$x+2 y \geq 6,5 x+3 y \geq 15, x \leq 7, y \leq 6, x$, $y \geq 0$
C
$x+2 y \geq 6,5 x+3 y \leq 15, x \geq 7, y \leq 6, x$, $y \geq 0$
D
$x+2 y \leq 6,5 x+3 y \leq 15, x \leq 7, y \geq 6, x$, $y \geq 0$
3
MHT CET 2024 4th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $\bar{p}$ and $\bar{q}$ be the position vectors of $P$ and $Q$ respectively, with respect to $O$ and $|\vec{p}|=p,|\vec{q}|=q$. The points $R$ and $S$ divide PQ internally and externally in the ratio $2: 3$ respectively. If OR and $O S$ are perpendiculars, then

A
$9 p^2=4 q^2$
B
$4 p^2=9 q^2$
C
$9 p=4 q$
D
$4 \mathrm{p}=9 \mathrm{q}$
4
MHT CET 2024 4th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The value of a for which the volume of parallelepiped formed by $\hat{i}+a \hat{j}+\hat{k}, \hat{j}+a \hat{k}$ and $a \hat{i}+\hat{k}$ becomes minimum is

A
$\frac{-1}{\sqrt{3}}$
B
$\frac{1}{\sqrt{3}}$
C
$\sqrt{3}$
D
$-\sqrt{3}$
MHT CET Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12