1
MHT CET 2024 4th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $\left(-2-\frac{1}{3} \mathrm{i}\right)^3=\frac{x+\mathrm{i} y}{27}, \mathrm{i}=\sqrt{-1}$, where $x$ and $y$ are real numbers, then $(y-x)$ has the value

A
$-91$
B
$-85$
C
$85$
D
$91$
2
MHT CET 2024 4th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The shaded region in the following figure is the solution set of the inequations

MHT CET 2024 4th May Morning Shift Mathematics - Linear Programming Question 25 English

A
$x+2 y \leq 6,5 x+3 y \geq 15, x \leq 7, y \leq 6, x$, $y \geq 0$
B
$x+2 y \geq 6,5 x+3 y \geq 15, x \leq 7, y \leq 6, x$, $y \geq 0$
C
$x+2 y \geq 6,5 x+3 y \leq 15, x \geq 7, y \leq 6, x$, $y \geq 0$
D
$x+2 y \leq 6,5 x+3 y \leq 15, x \leq 7, y \geq 6, x$, $y \geq 0$
3
MHT CET 2024 4th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $\bar{p}$ and $\bar{q}$ be the position vectors of $P$ and $Q$ respectively, with respect to $O$ and $|\vec{p}|=p,|\vec{q}|=q$. The points $R$ and $S$ divide PQ internally and externally in the ratio $2: 3$ respectively. If OR and $O S$ are perpendiculars, then

A
$9 p^2=4 q^2$
B
$4 p^2=9 q^2$
C
$9 p=4 q$
D
$4 \mathrm{p}=9 \mathrm{q}$
4
MHT CET 2024 4th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The value of a for which the volume of parallelepiped formed by $\hat{i}+a \hat{j}+\hat{k}, \hat{j}+a \hat{k}$ and $a \hat{i}+\hat{k}$ becomes minimum is

A
$\frac{-1}{\sqrt{3}}$
B
$\frac{1}{\sqrt{3}}$
C
$\sqrt{3}$
D
$-\sqrt{3}$
MHT CET Papers
EXAM MAP