1
MHT CET 2024 4th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $a, b \in R$. If the mirror image of the point $\mathrm{p}(\mathrm{a}, 6,9)$ w.r.t. line $\frac{x-3}{7}=\frac{y-2}{5}=\frac{z-1}{-9}$ is $(20, b,-a-9)$, then $|a+b|$ is equal to

A
88
B
86
C
90
D
84
2
MHT CET 2024 4th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

A random variable $X$ has the following probability distribution

$\mathrm{X:}$ 1 2 3 4 5
$\mathrm{P(X):}$ $\mathrm{k^2}$ $\mathrm{2k}$ $\mathrm{k}$ $\mathrm{2k}$ $\mathrm{5k^2}$

Then $\mathrm{P(X > 2)}$ is equal to

A
$\frac{7}{12}$
B
$\frac{23}{36}$
C
$\frac{1}{36}$
D
$\frac{1}{6}$
3
MHT CET 2024 4th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The number of distinct real values of $\lambda$, for which the vectors $-\lambda^2 \hat{i}+\hat{j}+\hat{k}, \hat{i}-\lambda^2 \hat{j}+\hat{k}$ and $\hat{i}+\hat{j}-\lambda^2 \hat{k}$ are coplanar, is

A
zero.
B
one.
C
two.
D
three.
4
MHT CET 2024 4th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $f(x)=\log _e\left(\frac{1-x}{1+x}\right),|x|<1$, then $f\left(\frac{2 x}{1+x^2}\right)$ is equal to

A
$2 \mathrm{f}\left(x^2\right)$
B
$-2 \mathrm{f}(x)$
C
$(\mathrm{f}(x))^2$
D
$2 \mathrm{f}(x)$
MHT CET Papers
EXAM MAP