1
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Maximum value of $Z=100 x+70 y$ Subject to $2 x \geq 4, y \leq 3, x+y \leq 8, x, y \geq 0$ is

A
800
B
940
C
400
D
710
2
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Three persons $\mathrm{P}, \mathrm{Q}$ and R independently try to hit a target. If the probabilities of their hitting the target are $\frac{3}{4}, \frac{1}{2}$ and $\frac{5}{8}$ respectively, then the probability that the target is hit by P or Q but not by $R$, is

A
$\frac{15}{64}$
B
$\frac{21}{64}$
C
$\frac{39}{64}$
D
$\frac{9}{64}$
3
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\bar{a}$ and $\bar{b}$ are two unit vectors such that $\bar{a}+2 \bar{b}$ and $5 \overline{\mathrm{a}}-4 \overline{\mathrm{~b}}$ are perpendicular to each other, then the angle between $\bar{a}$ and $\bar{b}$ is

A
$\frac{\pi}{4}$
B
$\frac{\pi}{3}$
C
$\cos ^{-1}\left(\frac{1}{3}\right)$
D
$\cos ^{-1}\left(\frac{3}{7}\right)$
4
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let the function $g:(-\infty, \infty) \rightarrow\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ be given by $g(u)=2 \tan ^{-1}\left(e^u\right)-\frac{\pi}{2}$. Then $g$ is

A
even and is strictly increasing in $(0, \infty)$.
B
odd and is strictly decreasing in $(-\infty, \infty)$.
C
odd and is strictly increasing in $(-\infty, \infty)$.
D
neither even nor odd, but is strictly increasing in $(-\infty, \infty)$.
MHT CET Papers
EXAM MAP