A particle executing S.H.M. has velocities ' $\mathrm{V}_1$ ' and ' $\mathrm{V}_2$ ' at distances ' $x_1$ ' and ' $x_2$ ' respectively, from the mean position. Its frequency is
The angle of incidence is found to be twice the angle of refraction when ray of light passes from vacuum into a medium of refractive index ' $\mu$ '. The angle of incidence will be
The input signal given to C.E. amplifier having a voltage gain of 126 is $V_i=2 \cos \left(12 t+\frac{\pi}{3}\right)$. The corresponding output signal will be
The figure shows the variation of photocurrent with anode potential for four different radiations. Let $\mathrm{I}_{\mathrm{a}}, \mathrm{I}_{\mathrm{b}}, \mathrm{I}_{\mathrm{c}}$ and $\mathrm{I}_{\mathrm{d}}$ be the intensities for the curves $a, b, c$ and $d$ respectively $\left[f_a, f_b, f_c\right.$ and $f_d$ are frequencies respectively]