Three persons $\mathrm{P}, \mathrm{Q}$ and R independently try to hit a target. If the probabilities of their hitting the target are $\frac{3}{4}, \frac{1}{2}$ and $\frac{5}{8}$ respectively, then the probability that the target is hit by P or Q but not by $R$, is
If $\bar{a}$ and $\bar{b}$ are two unit vectors such that $\bar{a}+2 \bar{b}$ and $5 \overline{\mathrm{a}}-4 \overline{\mathrm{~b}}$ are perpendicular to each other, then the angle between $\bar{a}$ and $\bar{b}$ is
Let the function $g:(-\infty, \infty) \rightarrow\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ be given by $g(u)=2 \tan ^{-1}\left(e^u\right)-\frac{\pi}{2}$. Then $g$ is
The length of the projection of the line segment joining the points $(5,-1,4)$ and $(4,-1,3)$ on the plane $x+y+z=7$ is