1
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $\mathrm{f}(x)=\frac{1-\tan x}{4 x-\pi}, x \neq \frac{\pi}{4}, x \in\left[0, \frac{\pi}{2}\right]$. $f(x)$ is continuous in $\left[0, \frac{\pi}{2}\right]$, then $f\left(\frac{\pi}{4}\right)$ is

A
$-\frac{1}{2}$
B
$\frac{1}{2}$
C
1
D
$-$1
2
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The value of $\int_\limits{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\sin ^2 x}{1+2^x} d x$ is

A
$\frac{\pi}{4}$
B
$\frac{\pi}{8}$
C
$\frac{\pi}{2}$
D
$4 \pi$
3
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The area (in sq. units) of the region described by $\left\{(x, y) / y^2 \leq 2 x\right.$ and $\left.y \geq(4 x-1)\right\}$ is

A
$\frac{15}{64}$
B
$\frac{9}{32}$
C
$\frac{7}{32}$
D
$\frac{5}{64}$
4
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $y=y(x)$ be the solution of the differential equation $(x \log x) \frac{d y}{d x}+y=2 x \log x(x \geq 1)$ then $y(\mathrm{e})$ is equal to

A
2
B
2e
C
e
D
1
MHT CET Papers
EXAM MAP