1
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+1
-0

Let $\mathrm{f}(x)=\frac{1-\tan x}{4 x-\pi}, x \neq \frac{\pi}{4}, x \in\left[0, \frac{\pi}{2}\right]$. $f(x)$ is continuous in $\left[0, \frac{\pi}{2}\right]$, then $f\left(\frac{\pi}{4}\right)$ is

A
$-\frac{1}{2}$
B
$\frac{1}{2}$
C
1
D
$-$1
2
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+1
-0

The value of $\int_\limits{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\sin ^2 x}{1+2^x} d x$ is

A
$\frac{\pi}{4}$
B
$\frac{\pi}{8}$
C
$\frac{\pi}{2}$
D
$4 \pi$
3
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+1
-0

The area (in sq. units) of the region described by $\left\{(x, y) / y^2 \leq 2 x\right.$ and $\left.y \geq(4 x-1)\right\}$ is

A
$\frac{15}{64}$
B
$\frac{9}{32}$
C
$\frac{7}{32}$
D
$\frac{5}{64}$
4
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+1
-0

Let $y=y(x)$ be the solution of the differential equation $(x \log x) \frac{d y}{d x}+y=2 x \log x(x \geq 1)$ then $y(\mathrm{e})$ is equal to

A
2
B
2e
C
e
D
1
MHT CET Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12