1
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $y=y(x)$ be the solution of the differential equation $(x \log x) \frac{d y}{d x}+y=2 x \log x(x \geq 1)$ then $y(\mathrm{e})$ is equal to

A
2
B
2e
C
e
D
1
2
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The set of all points, for which $f(x)=x^2 e^{-x}$ strictly increases, is

A
$(0,2)$
B
$(2, \infty)$
C
$(-2,0)$
D
$(-\infty, \infty)$
3
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Range of the function $\mathrm{f}(x)=\frac{x^2+x+2}{x^2+x+1}, x \in \mathbb{R}$ is

A
$\left(1, \frac{7}{3}\right)$
B
$\left[1, \frac{7}{3}\right)$
C
$\left(1, \frac{7}{3}\right]$
D
$\left[1, \frac{7}{3}\right]$
4
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $S$ be a non-empty subset of $\mathbb{R}$. Consider the following statement:

p : There is a rational number $x \in \mathrm{~S}$ such that $x>0$.

Which of the following statements is the negation of the statement p?

A
There is a rational number $x \in \mathrm{~S}$ such that $x \leq 0$.
B
There is no rational number $x \in \mathrm{~S}$ such that $x \leq 0$.
C
Every rational number $x \in S$ satisfies $x \leq 0$.
D
$x \in \mathrm{~S}$ and $x \leq 0 \Rightarrow x$ is not a rational number.
MHT CET Papers
EXAM MAP