Two loops P and Q of radii $\mathrm{R}_1$ and $\mathrm{R}_2$ are made from uniform metal wire of same material. $I_p$ and $\mathrm{I}_{\mathrm{Q}}$ be the moment of inertia of loop P and Q respectively then ratio $R_1 / R_2$ is $\left(\right.$ Given $\left.I_P / I_Q=27\right)$
The power radiated by a black body is P and it radiates maximum energy around the wavelength $\lambda_0$. Now the temperature of the black body is changed so that it radiates maximum energy around wavelength $\left(\frac{\lambda_0}{2}\right)$. The power radiated by it will now increase by a factor of
Two coils P and Q each of radius R carry currents I and $\sqrt{8} \mathrm{I}$ respectively in same direction. Those coils are lying in perpendicular planes such that they have a common centre. The magnitude of the magnetic field at the common centre of the two coils is ( $\mu_0=$ permeability of free space)
In Young's double slit experiment, intensity at a point is $\left(\frac{1}{4}\right)$ of the maximum intensity. The angular position of this point is