If $\sin ^{-1}\left(\frac{x}{5}\right)+\operatorname{cosec}^{-1}\left(\frac{5}{4}\right)=\frac{\pi}{2}$, then the value of $x$ is
A random variable X takes the values $0,1,2,3$ and its mean is 1.3 . If $\mathrm{P}(\mathrm{X}=3)=2 \mathrm{P}(\mathrm{X}=1)$ and $P(X=2)=0.3$, then $P(X=0)$ is
Let $\overline{\mathrm{a}}, \overline{\mathrm{b}}$ and $\overline{\mathrm{c}}$ be three non-zero vectors such that no two of them are collinear and $(\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \times \overline{\mathrm{c}}=\frac{1}{3}|\overline{\mathrm{~b}}||\mathrm{c}| \overline{\mathrm{a}}$. If $\theta$ is the angle between vectors $\bar{b}$ and $\bar{c}$, then the value of $\sin \theta$ is
The equation of the plane, passing through the intersection of the planes $x+y+z=1$ and $2 x+3 y-z+4=0$ and parallel to $Y$-axis is