1
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+1
-0

Suppose that the points $(h, k),(1,2)$ and $(-3,4)$ lie on the line $l_1$. If a line $l_2$ passing through the points $(h, k)$ and $(4,3)$ is perpendicular to $l_1$, then $\left(\frac{k}{h}\right)$ equals

A
$\frac{1}{3}$
B
$0$
C
$3$
D
$-\frac{1}{7}$
2
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+1
-0

If $\int \frac{\mathrm{d} x}{\cos ^3 x \sqrt{2 \sin 2 x}}=(\tan x)^A+C(\tan x)^B+\mathrm{k}$ where k is a constant of integration, then $A+B+C$ equals

A
$\frac{27}{10}$
B
$\frac{16}{5}$
C
$\frac{27}{5}$
D
$\frac{21}{5}$
3
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+1
-0

The maximum value of $\left(\cos \alpha_1\right) \cdot\left(\cos \alpha_2\right) \ldots .\left(\cos \alpha_n\right)$ under the constraints $0 \leq \alpha_1, \alpha_2, \ldots ., \alpha_n \leq \frac{\pi}{2}$ and $\left(\cot \alpha_1\right) \cdot\left(\cot \alpha_2\right) \ldots\left(\cot \alpha_n\right)=1$ is

A
$\frac{1}{2^{\left(\frac{n}{2}\right)}}$
B
$\frac{1}{2^n}$
C
$2^n$
D
$2^{\frac{n}{2}}$
4
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+1
-0

If $\frac{\mathrm{d} y}{\mathrm{~d} x}=y+3, y+3>0$ and $y(0)=2$, then $y(\log 2)$ is equal to

A
13
B
$-$2
C
7
D
5
MHT CET Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12