1
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Suppose that the points $(h, k),(1,2)$ and $(-3,4)$ lie on the line $l_1$. If a line $l_2$ passing through the points $(h, k)$ and $(4,3)$ is perpendicular to $l_1$, then $\left(\frac{k}{h}\right)$ equals

A
$\frac{1}{3}$
B
$0$
C
$3$
D
$-\frac{1}{7}$
2
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\int \frac{\mathrm{d} x}{\cos ^3 x \sqrt{2 \sin 2 x}}=(\tan x)^A+C(\tan x)^B+\mathrm{k}$ where k is a constant of integration, then $A+B+C$ equals

A
$\frac{27}{10}$
B
$\frac{16}{5}$
C
$\frac{27}{5}$
D
$\frac{21}{5}$
3
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The maximum value of $\left(\cos \alpha_1\right) \cdot\left(\cos \alpha_2\right) \ldots .\left(\cos \alpha_n\right)$ under the constraints $0 \leq \alpha_1, \alpha_2, \ldots ., \alpha_n \leq \frac{\pi}{2}$ and $\left(\cot \alpha_1\right) \cdot\left(\cot \alpha_2\right) \ldots\left(\cot \alpha_n\right)=1$ is

A
$\frac{1}{2^{\left(\frac{n}{2}\right)}}$
B
$\frac{1}{2^n}$
C
$2^n$
D
$2^{\frac{n}{2}}$
4
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\frac{\mathrm{d} y}{\mathrm{~d} x}=y+3, y+3>0$ and $y(0)=2$, then $y(\log 2)$ is equal to

A
13
B
$-$2
C
7
D
5
MHT CET Papers
EXAM MAP