1
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $A=\left[\begin{array}{ll}x & 1 \\ 1 & 0\end{array}\right], x \in \mathbb{R}^{+}$and $A^4=\left[a_{i j}\right]_2$. If $a_{11}=109$, then $\left(A^4\right)^{-1}=$

A
$\left[\begin{array}{rr}109 & 33 \\ 33 & 10\end{array}\right]$
B
$\left[\begin{array}{ll}10 & 33 \\ 33 & 10\end{array}\right]$
C
$\left[\begin{array}{cc}10 & 33 \\ 33 & 109\end{array}\right]$
D
$\left[\begin{array}{cc}10 & -33 \\ -33 & 109\end{array}\right]$
2
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The proposition $(\sim p) \vee(p \wedge \sim q)$ is equivalent to

A
$\mathrm{p} \wedge(\sim \mathrm{q})$
B
$p \vee(q)$
C
$p \rightarrow(\sim q)$
D
$\mathrm{q} \rightarrow \mathrm{p}$
3
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

In a triangle ABC , with usual notations, $2 \mathrm{ac} \sin \left(\frac{\mathrm{A}-\mathrm{B}+\mathrm{C}}{2}\right)$ is equal to

A
$\mathrm{a}^2+\mathrm{b}^2-\mathrm{c}^2$
B
$\mathrm{c}^2+\mathrm{a}^2-\mathrm{b}^2$
C
$\mathrm{b}^2-\mathrm{a}^2+\mathrm{c}^2$
D
$\mathrm{a^2-b^2-c^2}$
4
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\frac{x^2}{\mathrm{a}}+\frac{2 x y}{\mathrm{~h}}+\frac{y^2}{\mathrm{~b}}=0$ represents a pair of straight lines and slope of one of the lines is twice that of the other, then $a b: h^2$ is

A
$1: 2$
B
$2: 1$
C
$9: 8$
D
$8: 9$
MHT CET Papers
EXAM MAP