1
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+1
-0

A random variable X takes the values $0,1,2,3$ and its mean is 1.3 . If $\mathrm{P}(\mathrm{X}=3)=2 \mathrm{P}(\mathrm{X}=1)$ and $P(X=2)=0.3$, then $P(X=0)$ is

A
0.2
B
0.1
C
0.3
D
0.4
2
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+1
-0

Let $\overline{\mathrm{a}}, \overline{\mathrm{b}}$ and $\overline{\mathrm{c}}$ be three non-zero vectors such that no two of them are collinear and $(\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \times \overline{\mathrm{c}}=\frac{1}{3}|\overline{\mathrm{~b}}||\mathrm{c}| \overline{\mathrm{a}}$. If $\theta$ is the angle between vectors $\bar{b}$ and $\bar{c}$, then the value of $\sin \theta$ is

A
$\frac{2}{3}$
B
$\frac{-2 \sqrt{2}}{3}$
C
$\frac{2 \sqrt{2}}{3}$
D
$\frac{-\sqrt{2}}{3}$
3
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+1
-0

The equation of the plane, passing through the intersection of the planes $x+y+z=1$ and $2 x+3 y-z+4=0$ and parallel to $Y$-axis is

A
$x+4 z-1=0$
B
$x+4 z-7=0$
C
$x-4 z+7=0$
D
$x-4 z+1=0$
4
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+1
-0

If $\mathrm{f}(1)=1, \mathrm{f}^{\prime}(1)=3$, then the derivative of $\mathrm{f}(\mathrm{f}(\mathrm{f}(x)))+(\mathrm{f}(x))^2$ at $x=1$ is

A
12
B
9
C
15
D
33
MHT CET Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12