1
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

A random variable X takes the values $0,1,2,3$ and its mean is 1.3 . If $\mathrm{P}(\mathrm{X}=3)=2 \mathrm{P}(\mathrm{X}=1)$ and $P(X=2)=0.3$, then $P(X=0)$ is

A
0.2
B
0.1
C
0.3
D
0.4
2
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $\overline{\mathrm{a}}, \overline{\mathrm{b}}$ and $\overline{\mathrm{c}}$ be three non-zero vectors such that no two of them are collinear and $(\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \times \overline{\mathrm{c}}=\frac{1}{3}|\overline{\mathrm{~b}}||\mathrm{c}| \overline{\mathrm{a}}$. If $\theta$ is the angle between vectors $\bar{b}$ and $\bar{c}$, then the value of $\sin \theta$ is

A
$\frac{2}{3}$
B
$\frac{-2 \sqrt{2}}{3}$
C
$\frac{2 \sqrt{2}}{3}$
D
$\frac{-\sqrt{2}}{3}$
3
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The equation of the plane, passing through the intersection of the planes $x+y+z=1$ and $2 x+3 y-z+4=0$ and parallel to $Y$-axis is

A
$x+4 z-1=0$
B
$x+4 z-7=0$
C
$x-4 z+7=0$
D
$x-4 z+1=0$
4
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\mathrm{f}(1)=1, \mathrm{f}^{\prime}(1)=3$, then the derivative of $\mathrm{f}(\mathrm{f}(\mathrm{f}(x)))+(\mathrm{f}(x))^2$ at $x=1$ is

A
12
B
9
C
15
D
33
MHT CET Papers
EXAM MAP