1
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let the vectors $\overline{\mathrm{a}}, \overline{\mathrm{b}}, \overline{\mathrm{c}}$ be such that $|\bar{a}|=2,|\bar{b}|=4$ and $|\bar{c}|=4$. If the projection of $\bar{b}$ on $\bar{a}$ is equal to the projection of $\bar{c}$ on $\bar{a}$ and $\bar{b}$ is perpendicular to $\bar{c}$, then the value of $|\vec{a}+\bar{b}-\bar{c}|$ is

A
$2\sqrt5$
B
6
C
4
D
$4\sqrt2$
2
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If the sum of the deviations of 50 observations from 30 is 50 , then the mean of these observations is

A
30
B
50
C
51
D
31
3
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The general solution of the equation $\sqrt{3} \cos \theta+\sin \theta=\sqrt{2}$ is

A
$\mathrm{n} \pi+(-1)^{\mathrm{n}} \frac{\pi}{2}+\frac{\pi}{6}, \mathrm{n} \in \mathbb{Z}$
B
$\mathrm{n} \pi+(-1)^{\mathrm{n}} \frac{\pi}{2}-\frac{\pi}{6}, \mathrm{n} \in \mathbb{Z}$
C
$\mathrm{n} \pi+(-1)^{\mathrm{n}} \frac{\pi}{4}-\frac{\pi}{3}, \mathrm{n} \in \mathbb{Z}$
D
$\mathrm{n} \pi+(-1)^{\mathrm{n}} \frac{\pi}{4}+\frac{\pi}{3}, \mathrm{n} \in \mathbb{Z}$
4
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\sin ^{-1}\left(\frac{x}{5}\right)+\operatorname{cosec}^{-1}\left(\frac{5}{4}\right)=\frac{\pi}{2}$, then the value of $x$ is

A
4
B
5
C
1
D
3
MHT CET Papers
EXAM MAP