1
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let the function $g:(-\infty, \infty) \rightarrow\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ be given by $g(u)=2 \tan ^{-1}\left(e^u\right)-\frac{\pi}{2}$. Then $g$ is

A
even and is strictly increasing in $(0, \infty)$.
B
odd and is strictly decreasing in $(-\infty, \infty)$.
C
odd and is strictly increasing in $(-\infty, \infty)$.
D
neither even nor odd, but is strictly increasing in $(-\infty, \infty)$.
2
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The length of the projection of the line segment joining the points $(5,-1,4)$ and $(4,-1,3)$ on the plane $x+y+z=7$ is

A
$\sqrt{\frac{2}{3}}$ units
B
$\frac{2}{\sqrt{3}}$ units
C
$\frac{2}{3}$ units
D
$\frac{\sqrt{2}}{3}$ units
3
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $f(x)=\frac{\sin ^2 \pi x}{1+\pi^x}$, then $\int(f(x)+f(-x)) d x$ is equal to

A
$\frac{x}{2}-\frac{\sin \pi x}{2 \pi}+\mathrm{c}$, (where c is a constant of integration)
B
$\frac{1}{2} x-\frac{\sin 2 \pi x}{4 \pi}+\mathrm{c}$, (where c is a constant of integration)
C
$\frac{x}{2}-\frac{\cos \pi x}{2 \pi}+\mathrm{c}$, (where c is a constant of integration)
D
$\frac{1}{1+\pi^x}+\frac{\cos ^2 \pi x}{2 \pi}+\mathrm{c}$, (where c is a constant of integration)
4
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Suppose that the points $(h, k),(1,2)$ and $(-3,4)$ lie on the line $l_1$. If a line $l_2$ passing through the points $(h, k)$ and $(4,3)$ is perpendicular to $l_1$, then $\left(\frac{k}{h}\right)$ equals

A
$\frac{1}{3}$
B
$0$
C
$3$
D
$-\frac{1}{7}$
MHT CET Papers
EXAM MAP