1
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The proposition $(\sim p) \vee(p \wedge \sim q)$ is equivalent to

A
$\mathrm{p} \wedge(\sim \mathrm{q})$
B
$p \vee(q)$
C
$p \rightarrow(\sim q)$
D
$\mathrm{q} \rightarrow \mathrm{p}$
2
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

In a triangle ABC , with usual notations, $2 \mathrm{ac} \sin \left(\frac{\mathrm{A}-\mathrm{B}+\mathrm{C}}{2}\right)$ is equal to

A
$\mathrm{a}^2+\mathrm{b}^2-\mathrm{c}^2$
B
$\mathrm{c}^2+\mathrm{a}^2-\mathrm{b}^2$
C
$\mathrm{b}^2-\mathrm{a}^2+\mathrm{c}^2$
D
$\mathrm{a^2-b^2-c^2}$
3
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\frac{x^2}{\mathrm{a}}+\frac{2 x y}{\mathrm{~h}}+\frac{y^2}{\mathrm{~b}}=0$ represents a pair of straight lines and slope of one of the lines is twice that of the other, then $a b: h^2$ is

A
$1: 2$
B
$2: 1$
C
$9: 8$
D
$8: 9$
4
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\overline{\mathrm{a}}, \overline{\mathrm{b}}$ and $\overline{\mathrm{c}}$ are unit coplanar vectors, then the scalar triple product $\left[\begin{array}{lll}2 \overline{\mathrm{a}}-\overline{\mathrm{b}} & 2 \overline{\mathrm{~b}}-\overline{\mathrm{c}} & 2 \overline{\mathrm{c}}-\overline{\mathrm{a}}\end{array}\right]$ has the value

A
0
B
1
C
$-\sqrt{3}$
D
$\sqrt{3}$
MHT CET Papers
EXAM MAP