1
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+1
-0

The proposition $(\sim p) \vee(p \wedge \sim q)$ is equivalent to

A
$\mathrm{p} \wedge(\sim \mathrm{q})$
B
$p \vee(q)$
C
$p \rightarrow(\sim q)$
D
$\mathrm{q} \rightarrow \mathrm{p}$
2
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+1
-0

In a triangle ABC , with usual notations, $2 \mathrm{ac} \sin \left(\frac{\mathrm{A}-\mathrm{B}+\mathrm{C}}{2}\right)$ is equal to

A
$\mathrm{a}^2+\mathrm{b}^2-\mathrm{c}^2$
B
$\mathrm{c}^2+\mathrm{a}^2-\mathrm{b}^2$
C
$\mathrm{b}^2-\mathrm{a}^2+\mathrm{c}^2$
D
$\mathrm{a^2-b^2-c^2}$
3
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+1
-0

If $\frac{x^2}{\mathrm{a}}+\frac{2 x y}{\mathrm{~h}}+\frac{y^2}{\mathrm{~b}}=0$ represents a pair of straight lines and slope of one of the lines is twice that of the other, then $a b: h^2$ is

A
$1: 2$
B
$2: 1$
C
$9: 8$
D
$8: 9$
4
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+1
-0

If $\overline{\mathrm{a}}, \overline{\mathrm{b}}$ and $\overline{\mathrm{c}}$ are unit coplanar vectors, then the scalar triple product $\left[\begin{array}{lll}2 \overline{\mathrm{a}}-\overline{\mathrm{b}} & 2 \overline{\mathrm{~b}}-\overline{\mathrm{c}} & 2 \overline{\mathrm{c}}-\overline{\mathrm{a}}\end{array}\right]$ has the value

A
0
B
1
C
$-\sqrt{3}$
D
$\sqrt{3}$
MHT CET Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12