1
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The abscissa of the point on the curve $y=\mathrm{a}\left(\mathrm{e}^{\frac{x}{a}}+\mathrm{e}^{-\frac{x}{a}}\right)$ where the tangent is parallel to the X -axis is

A
0
B
a
C
2a
D
$-$2a
2
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The integral $\int \frac{2 x^3-1}{x^4+x} \mathrm{~d} x$ is equal to

A
$\log \frac{\left|x^3+1\right|}{x^2}+c$, (where c is a constant of integration)
B
$\frac{1}{2} \log \frac{\left(x^3+1\right)^2}{\left|x^3\right|}+\mathrm{c}$, (where c is a constant of integration)
C
$\quad \log \left|\frac{x^3+1}{x}\right|+\mathrm{c}$, (where c is a constant of integration)
D
$\frac{1}{2} \log \frac{\left|x^3+1\right|}{x^2}+\mathrm{c}$, (where c is a constant of integration)
3
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $\mathrm{z}=x+\mathrm{i} y$ be a complex number, where $x$ and $y$ are integers and $i=\sqrt{-1}$. Then the area of the rectangle whose vertices are the roots of the equation $\overline{z z}^3+\overline{\mathrm{zz}}^3=350$ is

A
48
B
32
C
40
D
80
4
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\int \frac{\log \left(t+\sqrt{1+t^2}\right)}{\sqrt{1+t^2}} d t=\frac{1}{2}(g(t))^2+c$ where c is a constant of integration, then $\mathrm{g}(2)$ is equal to

A
$2 \log (2+\sqrt{5})$
B
$\log (2+\sqrt{5})$
C
$\frac{1}{\sqrt{5}} \log (2+\sqrt{5})$
D
$\frac{1}{2} \log (2+\sqrt{5})$
MHT CET Papers
EXAM MAP