1
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The value of $\lim _\limits{x \rightarrow 0}\left((\sin x)^{\frac{1}{x}}+\left(\frac{1}{x}\right)^{\sin x}\right)$, where $x>0$ is

A
0
B
$-$1
C
1
D
2
2
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\theta$ denotes the acute angle between the curves $y=10-x^2$ and $y=2+x^2$, at a point of the intersection, then $|\tan \theta|$ is equal to

A
$\frac{8}{15}$
B
$\frac{8}{17}$
C
$\frac{4}{9}$
D
$\frac{7}{17}$
3
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $y=a \log x+b x^2+x$ has its extremum values at $x=-1$ and $x=2$, then

A
$\mathrm{a}=2, \mathrm{~b}=-1$
B
$\mathrm{a}=2, \mathrm{~b}=-\frac{1}{2}$
C
$\mathrm{a}=-2, \mathrm{~b}=\frac{1}{2}$
D
$\mathrm{a}=2, \mathrm{~b}=\frac{1}{2}$
4
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $P=\{\theta / \sin \theta-\cos \theta=\sqrt{2} \cos \theta\}$ and $Q=\{\theta / \sin \theta+\cos \theta=\sqrt{2} \sin \theta\}$ be two sets, then

A
$\mathrm{P} \subset \mathrm{Q}$ and $\mathrm{Q}-\mathrm{P} \neq \phi$
B
$\mathrm{Q} \not \subset \mathrm{P}$
C
$P \not Q$
D
$\mathrm{P}=\mathrm{Q}$
MHT CET Papers
EXAM MAP