1
MHT CET 2024 15th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

One side and one diagonal of a parallelogram are represented by $3 \hat{i}+\hat{j}-\hat{k}$ and $2 \hat{i}+\hat{j}-2 \hat{k}$ respectively, then the area of parallelogram in square units is

A
$2 \sqrt{3}$
B
$3 \sqrt{2}$
C
$6 \sqrt{2}$
D
$4 \sqrt{3}$
2
MHT CET 2024 15th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\int \mathrm{e}^{x^2} \cdot x^3 \mathrm{dx}=\mathrm{e}^{x^2} \mathrm{f}(x)+\mathrm{c}$ and $\mathrm{f}(1)=0$ (where c is a constant of integration), then the value of $f(x)$ is

A
$\frac{x-1}{2}$
B
$\frac{x^2+1}{2}$
C
$\frac{x+1}{2}$
D
$\frac{x^2-1}{2}$
3
MHT CET 2024 15th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\cot ^{-1}(\sqrt{\cos \alpha})-\tan ^{-1}(\sqrt{\cos \alpha})=x$, then the value of $\sin x$ is

A
$\cot ^2\left(\frac{\alpha}{2}\right)$
B
$\tan ^2\left(\frac{\alpha}{2}\right)$
C
$\tan \alpha$
D
$\cot \left(\frac{\alpha}{2}\right)$
4
MHT CET 2024 15th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $[x]^2-5[x]+6=0$, where $[\cdot]$ denotes the greatest integer function, then

A
$x \in(2,4]$
B
$x \in[2,4]$
C
$x \in[2,4)$
D
$x \in(2,4)$
MHT CET Papers
EXAM MAP