1
MHT CET 2024 15th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\int \mathrm{e}^{x^2} \cdot x^3 \mathrm{dx}=\mathrm{e}^{x^2} \mathrm{f}(x)+\mathrm{c}$ and $\mathrm{f}(1)=0$ (where c is a constant of integration), then the value of $f(x)$ is

A
$\frac{x-1}{2}$
B
$\frac{x^2+1}{2}$
C
$\frac{x+1}{2}$
D
$\frac{x^2-1}{2}$
2
MHT CET 2024 15th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\cot ^{-1}(\sqrt{\cos \alpha})-\tan ^{-1}(\sqrt{\cos \alpha})=x$, then the value of $\sin x$ is

A
$\cot ^2\left(\frac{\alpha}{2}\right)$
B
$\tan ^2\left(\frac{\alpha}{2}\right)$
C
$\tan \alpha$
D
$\cot \left(\frac{\alpha}{2}\right)$
3
MHT CET 2024 15th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $[x]^2-5[x]+6=0$, where $[\cdot]$ denotes the greatest integer function, then

A
$x \in(2,4]$
B
$x \in[2,4]$
C
$x \in[2,4)$
D
$x \in(2,4)$
4
MHT CET 2024 15th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The value of the integral $\int_0^{\frac{\pi}{2}} \frac{\sqrt{\cot x}}{\sqrt{\cot x}+\sqrt{\tan x}} \mathrm{dx}$ is

A
$\frac{\pi}{4}$
B
$\frac{\pi}{2}$
C
$\frac{\pi}{8}$
D
$2 \pi$
MHT CET Papers
EXAM MAP