1
MHT CET 2024 15th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$\int\limits_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{\sqrt{1+\cos x}}{(1-\cos x)^{\frac{5}{2}}} d x=$$

A
$\frac{1}{2}$
B
$\frac{-1}{2}$
C
$\frac{3}{2}$
D
$\frac{-3}{2}$
2
MHT CET 2024 15th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If the complex number $z=x+i y$, where $i=\sqrt{-1}$, satisfies the condition $|z+1|=1$, then $z$ lies on

A
X -axis.
B
circle with centre ( 1,0 ) and radius 1 unit.
C
circle with centre $(-1,0)$ and radius 1 unit.
D
Y-axis.
3
MHT CET 2024 15th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The general solution of the differential equation $\frac{d y}{d x}=\frac{3 e^{2 x}+3 e^{4 x}}{e^x+e^{-x}}$ is

A
$y=\mathrm{e}^{-3 x}+\mathrm{c}$, where c is a constant of integration.
B
$y=\mathrm{e}^x+\mathrm{c}$, where c is a constant of integration.
C
$y=\mathrm{e}^{3 x}+\mathrm{c}$, where c is a constant of integration.
D
$y=\mathrm{e}^{-x}+\mathrm{c}$, where c is a constant of integration.
4
MHT CET 2024 15th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\cos ^{-1} x=\alpha(0< x < 1)$ and $\sin ^{-1}\left(2 x \sqrt{1-x^2}\right)+\sec ^{-1}\left(\frac{1}{2 x^2-1}\right)=\frac{2 \pi}{3}$, then $\alpha$ is

A
$\frac{\pi}{2}$
B
$\frac{\pi}{6}$
C
$\frac{\pi}{3}$
D
$\frac{\pi}{4}$
MHT CET Papers
EXAM MAP