1
MHT CET 2024 15th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The vector equation of the plane through the line of intersection of the planes $x+y+z=1$ and $2 x+3 y+4 z=5$, which is perpendicular to the plane $x-y+z=0$, is

A
$\overline{\mathrm{r}} \cdot(\hat{\mathrm{i}}-\hat{\mathrm{k}})=2$
B
$\overline{\mathrm{r}} \cdot(\hat{\mathrm{i}}+\hat{\mathrm{k}})+2=0$
C
$\overline{\mathrm{r}} \cdot(\hat{\mathrm{i}}+\hat{\mathrm{k}})=2$
D
$\overline{\mathrm{r}} \cdot(\hat{\mathrm{i}}-\hat{\mathrm{k}})+2=0$
2
MHT CET 2024 15th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The equation of motion of a particle is $s=a t^2+b t+c$. If the displacement after 1 second is 20 m , velocity after 2 seconds is $30 \mathrm{~m} / \mathrm{sec}$ and the acceleration is $10 \mathrm{~m} / \mathrm{sec}^2$, then

A
$\mathrm{a}+\mathrm{c}=2 \mathrm{~b}$
B
$\mathrm{a}+\mathrm{c}=\mathrm{b}$
C
$\mathrm{a}-\mathrm{c}=\mathrm{b}$
D
$\mathrm{a+c=3 b}$
3
MHT CET 2024 15th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

One side and one diagonal of a parallelogram are represented by $3 \hat{i}+\hat{j}-\hat{k}$ and $2 \hat{i}+\hat{j}-2 \hat{k}$ respectively, then the area of parallelogram in square units is

A
$2 \sqrt{3}$
B
$3 \sqrt{2}$
C
$6 \sqrt{2}$
D
$4 \sqrt{3}$
4
MHT CET 2024 15th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\int \mathrm{e}^{x^2} \cdot x^3 \mathrm{dx}=\mathrm{e}^{x^2} \mathrm{f}(x)+\mathrm{c}$ and $\mathrm{f}(1)=0$ (where c is a constant of integration), then the value of $f(x)$ is

A
$\frac{x-1}{2}$
B
$\frac{x^2+1}{2}$
C
$\frac{x+1}{2}$
D
$\frac{x^2-1}{2}$
MHT CET Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12