The vector equation of the plane through the line of intersection of the planes $x+y+z=1$ and $2 x+3 y+4 z=5$, which is perpendicular to the plane $x-y+z=0$, is
The equation of motion of a particle is $s=a t^2+b t+c$. If the displacement after 1 second is 20 m , velocity after 2 seconds is $30 \mathrm{~m} / \mathrm{sec}$ and the acceleration is $10 \mathrm{~m} / \mathrm{sec}^2$, then
One side and one diagonal of a parallelogram are represented by $3 \hat{i}+\hat{j}-\hat{k}$ and $2 \hat{i}+\hat{j}-2 \hat{k}$ respectively, then the area of parallelogram in square units is
If $\int \mathrm{e}^{x^2} \cdot x^3 \mathrm{dx}=\mathrm{e}^{x^2} \mathrm{f}(x)+\mathrm{c}$ and $\mathrm{f}(1)=0$ (where c is a constant of integration), then the value of $f(x)$ is