1
MHT CET 2024 15th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $P, Q, R$ and $S$ be the points on the plane with position vectors $-2 \hat{i}-\hat{j}, 4 \hat{i}, 3 \hat{i}+3 \hat{j}$ and $-3 \hat{i}+2 \hat{j}$ respectively. Then the quadrilateral PQRS must be a

A
parallelogram, which is neither a rhombus nor a rectangle.
B
square.
C
rectangle, but not a square.
D
rhombus, but not a square.
2
MHT CET 2024 15th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $y=\frac{x^{\frac{2}{3}}-x^{\frac{-1}{3}}}{x^{\frac{2}{3}}+x^{\frac{-1}{3}}}, x \neq 0$, then $(x+1)^2 y_1=$

A
2
B
$-$2
C
$\frac{-1}{3}$
D
3
3
MHT CET 2024 15th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The Number of values of C that satisfy the conclusion of Rolle's theorem in case of following function $\mathrm{f}(x)=\sin 2 \pi x, x \in[-1,1]$ is

A
02
B
04
C
03
D
zero
4
MHT CET 2024 15th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

An open tank with a square bottom, to contain 4000 cubic cm . of liquid, is to be constructed. The dimensions of the tank, so that the surface area of the tank is minimum, are

A
side of square bottom $=40 \mathrm{~cm}$, height $=10 \mathrm{~cm}$.
B
side of square bottom $=20 \mathrm{~cm}$, height $=10 \mathrm{~cm}$.
C
side of square bottom $=10 \mathrm{~cm}$, height $=40 \mathrm{~cm}$.
D
side of square bottom $=5 \mathrm{~cm}$, height $=160 \mathrm{~cm}$.
MHT CET Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12