1
MHT CET 2024 15th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $P, Q, R$ and $S$ be the points on the plane with position vectors $-2 \hat{i}-\hat{j}, 4 \hat{i}, 3 \hat{i}+3 \hat{j}$ and $-3 \hat{i}+2 \hat{j}$ respectively. Then the quadrilateral PQRS must be a

A
parallelogram, which is neither a rhombus nor a rectangle.
B
square.
C
rectangle, but not a square.
D
rhombus, but not a square.
2
MHT CET 2024 15th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $y=\frac{x^{\frac{2}{3}}-x^{\frac{-1}{3}}}{x^{\frac{2}{3}}+x^{\frac{-1}{3}}}, x \neq 0$, then $(x+1)^2 y_1=$

A
2
B
$-$2
C
$\frac{-1}{3}$
D
3
3
MHT CET 2024 15th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The Number of values of C that satisfy the conclusion of Rolle's theorem in case of following function $\mathrm{f}(x)=\sin 2 \pi x, x \in[-1,1]$ is

A
02
B
04
C
03
D
zero
4
MHT CET 2024 15th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

An open tank with a square bottom, to contain 4000 cubic cm . of liquid, is to be constructed. The dimensions of the tank, so that the surface area of the tank is minimum, are

A
side of square bottom $=40 \mathrm{~cm}$, height $=10 \mathrm{~cm}$.
B
side of square bottom $=20 \mathrm{~cm}$, height $=10 \mathrm{~cm}$.
C
side of square bottom $=10 \mathrm{~cm}$, height $=40 \mathrm{~cm}$.
D
side of square bottom $=5 \mathrm{~cm}$, height $=160 \mathrm{~cm}$.
MHT CET Papers
EXAM MAP