1
MHT CET 2024 15th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The foot of the perpendicular drawn from origin to a plane is $\mathrm{M}(2,1,-2)$, then vector equation of the plane is

A
$\overline{\mathrm{r}} \cdot(2 \hat{\mathrm{i}}+\hat{\mathrm{j}}-2 \hat{\mathrm{k}})=9$
B
$\overline{\mathrm{r}} \cdot(-2 \hat{\mathrm{i}}-\hat{\mathrm{j}}-2 \hat{\mathrm{k}})=7$
C
$\bar{r} \cdot(2 \hat{i}-\hat{j}-2 \hat{k})=9$
D
$\overline{\mathrm{r}} \cdot(2 \hat{\mathrm{i}}-\hat{\mathrm{j}}-\hat{\mathrm{k}})=7$
2
MHT CET 2024 15th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $f(1)=1, f^{\prime}(1)=3$, then the derivative of $\mathrm{f}(\mathrm{f}(\mathrm{f}(x)))+(\mathrm{f}(x))^2$ at $x=1$ is

A
12
B
30
C
15
D
33
3
MHT CET 2024 15th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

In a triangle ABC , with usual notations, $\frac{\cos \mathrm{B}+\cos \mathrm{C}}{\mathrm{b}+\mathrm{c}}+\frac{\cos \mathrm{A}}{\mathrm{a}}$ has the value

A
$\frac{1}{\mathrm{~b}+\mathrm{c}}$
B
$\frac{1}{\mathrm{~b}}$
C
$\frac{1}{\mathrm{c}}$
D
$\frac{1}{\mathrm{a}}$
4
MHT CET 2024 15th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\mathrm{f}(x)=\frac{x}{x+1}, x \neq-1$ and (fof) $(x)=\mathrm{F}(x)$, then $\int \mathrm{F}(x) \mathrm{d} x$ is

A
$\frac{x}{2}+\frac{1}{2} \log (2 x+1)+\mathrm{c}$, where c is a constant of integration.
B
$\frac{x}{2}-\frac{1}{4} \log (2 x+1)+\mathrm{c}$, where c is a constant of integration.
C
$\frac{x}{2}-\frac{1}{2} \log (2 x+1)+\mathrm{c}$, where c is a constant of integration.
D
$\frac{x}{2}+\frac{1}{4} \log (2 x+1)+\mathrm{c}$, where c is a constant of integration.
MHT CET Papers
EXAM MAP