1
MHT CET 2024 15th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The solution set of the equation $\tan x+\sec x=2 \cos x$, in the interval $[0,2 \pi]$ is

A
$\left\{\frac{\pi}{6}, \frac{7 \pi}{6}, \frac{3 \pi}{2}\right\}$
B
$\left\{\frac{5 \pi}{6}, \frac{7 \pi}{6}, \frac{3 \pi}{2}\right\}$
C
$\left\{\frac{\pi}{6}, \frac{5 \pi}{6}, \frac{3 \pi}{2}\right\}$
D
$\left\{\frac{5 \pi}{6}, \frac{11 \pi}{6}, \frac{3 \pi}{2}\right\}$
2
MHT CET 2024 15th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If one of the lines represented by $a x^2+2 h x y+b y^2=0$ is perpendicular to $\mathrm{m} x+\mathrm{n} y=18$, then

A
$\mathrm{an}^2+2 \mathrm{hmn}+\mathrm{bm}^2=0$
B
$\mathrm{am}^2+2 \mathrm{hmn}+\mathrm{bn}^2=0$
C
$\mathrm{am}^2-2 \mathrm{hmn}+\mathrm{bn}^2=0$
D
$\mathrm{an}^2-2 \mathrm{hmn}+\mathrm{bm}^2=0$
3
MHT CET 2024 15th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\sin ^{-1}\left(\frac{x}{13}\right)+\operatorname{cosec}^{-1}\left(\frac{13}{12}\right)=\frac{\pi}{2}$, then the value of

A
4
B
12
C
5
D
11
4
MHT CET 2024 15th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The graphical solution set of the system of inequations $2 x+3 y \leq 6, x+4 y \geq 4, x \geq 0, y \geq 0$ is given by

MHT CET 2024 15th May Evening Shift Mathematics - Linear Programming Question 17 English

A
Fig. 1
B
Fig. 3
C
Fig. 2
D
Fig. 4
MHT CET Papers
EXAM MAP