1
MHT CET 2024 15th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $y=\frac{x^{\frac{2}{3}}-x^{\frac{-1}{3}}}{x^{\frac{2}{3}}+x^{\frac{-1}{3}}}, x \neq 0$, then $(x+1)^2 y_1=$

A
2
B
$-$2
C
$\frac{-1}{3}$
D
3
2
MHT CET 2024 15th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The Number of values of C that satisfy the conclusion of Rolle's theorem in case of following function $\mathrm{f}(x)=\sin 2 \pi x, x \in[-1,1]$ is

A
02
B
04
C
03
D
zero
3
MHT CET 2024 15th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

An open tank with a square bottom, to contain 4000 cubic cm . of liquid, is to be constructed. The dimensions of the tank, so that the surface area of the tank is minimum, are

A
side of square bottom $=40 \mathrm{~cm}$, height $=10 \mathrm{~cm}$.
B
side of square bottom $=20 \mathrm{~cm}$, height $=10 \mathrm{~cm}$.
C
side of square bottom $=10 \mathrm{~cm}$, height $=40 \mathrm{~cm}$.
D
side of square bottom $=5 \mathrm{~cm}$, height $=160 \mathrm{~cm}$.
4
MHT CET 2024 15th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$\int \operatorname{cosec}(x-a) \cdot \operatorname{cosec} x d x=$$

A
$\frac{-1}{\operatorname{sina}} \log (\sin (x-\mathrm{a}) \sin x)+\mathrm{c}$, where c is a constant of integration.
B
$\frac{1}{\sin \mathrm{a}} \log (\sin (x-\mathrm{a}) \sin x)+\mathrm{c}$, where c is a constant of integration.
C
$\frac{1}{\operatorname{sina}} \log (\sin (x-a) \cdot \operatorname{cosec} x)+c$, where c is a constant of integration.
D
$\frac{-1}{\operatorname{sina}} \log (\operatorname{cosec}(x-\mathrm{a}) \cdot \sin x)+\mathrm{c}$, where c is a constant of integration.
MHT CET Papers
EXAM MAP