1
MHT CET 2024 15th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The equation of a line passing through the point $(2,-1,1)$ and parallel to the line joining the points $\hat{i}+2 \hat{j}+2 \hat{k}$ and $-\hat{i}+4 \hat{j}+\hat{k}$ is

A
$\bar{r}=(2 \hat{i}-\hat{j}+\hat{k})+\lambda(-2 \hat{i}+2 \hat{j}-\hat{k})$
B
$\bar{r}=(2 \hat{i}-\hat{j}+\hat{k})+\lambda(2 \hat{i}+6 \hat{j}+3 \hat{k})$
C
$\bar{r}=(2 \hat{i}-\hat{j}+\hat{k})+\lambda(2 \hat{i}-2 \hat{j}-\hat{k})$
D
$\overline{\mathrm{r}}=(2 \hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}})+\lambda(2 \hat{\mathrm{i}}-6 \hat{\mathrm{j}}-3 \hat{\mathrm{k}})$
2
MHT CET 2024 15th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The foot of the perpendicular drawn from origin to a plane is $\mathrm{M}(2,1,-2)$, then vector equation of the plane is

A
$\overline{\mathrm{r}} \cdot(2 \hat{\mathrm{i}}+\hat{\mathrm{j}}-2 \hat{\mathrm{k}})=9$
B
$\overline{\mathrm{r}} \cdot(-2 \hat{\mathrm{i}}-\hat{\mathrm{j}}-2 \hat{\mathrm{k}})=7$
C
$\bar{r} \cdot(2 \hat{i}-\hat{j}-2 \hat{k})=9$
D
$\overline{\mathrm{r}} \cdot(2 \hat{\mathrm{i}}-\hat{\mathrm{j}}-\hat{\mathrm{k}})=7$
3
MHT CET 2024 15th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $f(1)=1, f^{\prime}(1)=3$, then the derivative of $\mathrm{f}(\mathrm{f}(\mathrm{f}(x)))+(\mathrm{f}(x))^2$ at $x=1$ is

A
12
B
30
C
15
D
33
4
MHT CET 2024 15th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

In a triangle ABC , with usual notations, $\frac{\cos \mathrm{B}+\cos \mathrm{C}}{\mathrm{b}+\mathrm{c}}+\frac{\cos \mathrm{A}}{\mathrm{a}}$ has the value

A
$\frac{1}{\mathrm{~b}+\mathrm{c}}$
B
$\frac{1}{\mathrm{~b}}$
C
$\frac{1}{\mathrm{c}}$
D
$\frac{1}{\mathrm{a}}$
MHT CET Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12