1
MHT CET 2024 15th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If the function $f(x)= \begin{cases}-2 \sin x & \text {, if } x \leq \frac{-\pi}{2} \\ A \sin x+B & , \text { if } \frac{-\pi}{2}< x<\frac{\pi}{2} \\ \cos x & , \text { if } x \geq \frac{\pi}{2}\end{cases}$ is continuous everywhere, then the values of $A$ and B are respectively

A
$1,-1$.
B
$-1,1$.
C
$1,1 .$
D
$-1,-1$.
2
MHT CET 2024 15th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$\int\limits_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{\sqrt{1+\cos x}}{(1-\cos x)^{\frac{5}{2}}} d x=$$

A
$\frac{1}{2}$
B
$\frac{-1}{2}$
C
$\frac{3}{2}$
D
$\frac{-3}{2}$
3
MHT CET 2024 15th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If the complex number $z=x+i y$, where $i=\sqrt{-1}$, satisfies the condition $|z+1|=1$, then $z$ lies on

A
X -axis.
B
circle with centre ( 1,0 ) and radius 1 unit.
C
circle with centre $(-1,0)$ and radius 1 unit.
D
Y-axis.
4
MHT CET 2024 15th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The general solution of the differential equation $\frac{d y}{d x}=\frac{3 e^{2 x}+3 e^{4 x}}{e^x+e^{-x}}$ is

A
$y=\mathrm{e}^{-3 x}+\mathrm{c}$, where c is a constant of integration.
B
$y=\mathrm{e}^x+\mathrm{c}$, where c is a constant of integration.
C
$y=\mathrm{e}^{3 x}+\mathrm{c}$, where c is a constant of integration.
D
$y=\mathrm{e}^{-x}+\mathrm{c}$, where c is a constant of integration.
MHT CET Papers
EXAM MAP