1
MHT CET 2024 15th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $A=\left[\begin{array}{cc}5 a & -b \\ 3 & 2\end{array}\right]$ and $A \cdot \operatorname{adj} A=A A^T$, then $5 a+b$ is equal to

A
$-$1
B
5
C
3
D
13
2
MHT CET 2024 15th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The function $\mathrm{f}(x)=2 x^3-9 x^2+12 x+2$ is decreasing in

A
$1< x<2$
B
$x< 1$ or $x>2$
C
$x< -1$ or $x>-2$
D
$-2< x<-1$
3
MHT CET 2024 15th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

$\int\left(1+x-\frac{1}{x}\right) \mathrm{e}^{x+\frac{1}{x}} \mathrm{~d} x$ is equal to

A
$(x-1) \mathrm{e}^{x+\frac{1}{x}}+\mathrm{c}$, where c is a constant of integration.
B
$x \mathrm{e}^{x+\frac{1}{x}}+c$, where $c$ is a constant of integration.
C
$(x+1) \mathrm{e}^{x+\frac{1}{x}}+\mathrm{c}$, where c is a constant of integration.
D
$-x e^{x+\frac{1}{x}}+c$, where $c$ is a constant of integration.
4
MHT CET 2024 15th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If the function $f(x)= \begin{cases}-2 \sin x & \text {, if } x \leq \frac{-\pi}{2} \\ A \sin x+B & , \text { if } \frac{-\pi}{2}< x<\frac{\pi}{2} \\ \cos x & , \text { if } x \geq \frac{\pi}{2}\end{cases}$ is continuous everywhere, then the values of $A$ and B are respectively

A
$1,-1$.
B
$-1,1$.
C
$1,1 .$
D
$-1,-1$.
MHT CET Papers
EXAM MAP