1
MHT CET 2024 15th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Four fair dice are thrown independently 27 times. Then the expected number of times, at least two dice show up a three or a five is

A
11
B
12
C
9
D
10
2
MHT CET 2024 15th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $0< x<1$, then $\sqrt{1+x^2}\left[\left\{x \cos \left(\cot ^{-1} x\right)+\sin \left(\cot ^{-1} x\right)\right\}^2-1\right]^{\frac{1}{2}}$ is equal to

A
$x^2 \sqrt{1+x^2}$
B
$x$
C
$x \sqrt{1+x^2}$
D
$\sqrt{1+x^2}$
3
MHT CET 2024 15th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If the vector $\overline{\mathrm{c}}$ lies in the plane of $\overline{\mathrm{a}}$ and $\overline{\mathrm{b}}$, where $\overline{\mathrm{a}}=\hat{\mathrm{i}}-\hat{\mathrm{j}}+2 \hat{\mathrm{k}}, \overline{\mathrm{b}}=\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}$ and $\overline{\mathrm{c}}=x \hat{\mathrm{i}}-(2-x) \hat{\mathrm{j}}-\hat{\mathrm{k}}$, then the value of $x$ is

A
4
B
$-$4
C
2
D
$-$2
4
MHT CET 2024 15th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The equation of a line passing through the point $(2,-1,1)$ and parallel to the line joining the points $\hat{i}+2 \hat{j}+2 \hat{k}$ and $-\hat{i}+4 \hat{j}+\hat{k}$ is

A
$\bar{r}=(2 \hat{i}-\hat{j}+\hat{k})+\lambda(-2 \hat{i}+2 \hat{j}-\hat{k})$
B
$\bar{r}=(2 \hat{i}-\hat{j}+\hat{k})+\lambda(2 \hat{i}+6 \hat{j}+3 \hat{k})$
C
$\bar{r}=(2 \hat{i}-\hat{j}+\hat{k})+\lambda(2 \hat{i}-2 \hat{j}-\hat{k})$
D
$\overline{\mathrm{r}}=(2 \hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}})+\lambda(2 \hat{\mathrm{i}}-6 \hat{\mathrm{j}}-3 \hat{\mathrm{k}})$
MHT CET Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12