1
MHT CET 2024 15th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If one of the lines represented by $a x^2+2 h x y+b y^2=0$ is perpendicular to $\mathrm{m} x+\mathrm{n} y=18$, then

A
$\mathrm{an}^2+2 \mathrm{hmn}+\mathrm{bm}^2=0$
B
$\mathrm{am}^2+2 \mathrm{hmn}+\mathrm{bn}^2=0$
C
$\mathrm{am}^2-2 \mathrm{hmn}+\mathrm{bn}^2=0$
D
$\mathrm{an}^2-2 \mathrm{hmn}+\mathrm{bm}^2=0$
2
MHT CET 2024 15th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\sin ^{-1}\left(\frac{x}{13}\right)+\operatorname{cosec}^{-1}\left(\frac{13}{12}\right)=\frac{\pi}{2}$, then the value of

A
4
B
12
C
5
D
11
3
MHT CET 2024 15th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The graphical solution set of the system of inequations $2 x+3 y \leq 6, x+4 y \geq 4, x \geq 0, y \geq 0$ is given by

MHT CET 2024 15th May Evening Shift Mathematics - Linear Programming Question 16 English

A
Fig. 1
B
Fig. 3
C
Fig. 2
D
Fig. 4
4
MHT CET 2024 15th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The derivative of $\sin ^{-1}\left(2 x \sqrt{1-x^2}\right)$ w.r.t. $\sin ^{-1}\left(3 x-4 x^3\right)$ is

A
$\frac{2}{3}$
B
$\frac{1}{2}$
C
$\frac{3}{2}$
D
$1$
MHT CET Papers
EXAM MAP