1
MHT CET 2024 15th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $x=\sin \theta, y=\sin ^3 \theta$, then $\frac{\mathrm{d}^2 y}{\mathrm{~d} x^2}$ at $\theta=\frac{\pi}{2}$ is

A
0
B
2
C
3
D
6
2
MHT CET 2024 15th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $P, Q, R$ and $S$ be the points on the plane with position vectors $-2 \hat{i}-\hat{j}, 4 \hat{i}, 3 \hat{i}+3 \hat{j}$ and $-3 \hat{i}+2 \hat{j}$ respectively. Then the quadrilateral PQRS must be a

A
parallelogram, which is neither a rhombus nor a rectangle.
B
square.
C
rectangle, but not a square.
D
rhombus, but not a square.
3
MHT CET 2024 15th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $y=\frac{x^{\frac{2}{3}}-x^{\frac{-1}{3}}}{x^{\frac{2}{3}}+x^{\frac{-1}{3}}}, x \neq 0$, then $(x+1)^2 y_1=$

A
2
B
$-$2
C
$\frac{-1}{3}$
D
3
4
MHT CET 2024 15th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The Number of values of C that satisfy the conclusion of Rolle's theorem in case of following function $\mathrm{f}(x)=\sin 2 \pi x, x \in[-1,1]$ is

A
02
B
04
C
03
D
zero
MHT CET Papers
EXAM MAP