Let $f(.)$ be a twice differentiable function from $ \mathbb{R}^{2} \rightarrow \mathbb{R}$. If $P, \mathbf{x}_{0} \in \mathbb{R}^{2}$ where $\vert \vert P\vert \vert$ is sufficiently small (here $\vert \vert . \vert \vert$ is the Euclidean norm or distance function), then $f (\mathbf{x}_{0} + p) = f(\mathbf{x}_{0}) + \nabla f(\mathbf{x}_{0})^{T}p + \dfrac{1}{2} p^{T} \nabla^{2}f(\psi)p$ where $\psi \in \mathbb{R}^{2}$ is a point on the line segment joining $\mathbf{x}_{0}$ and $\mathbf{x}_{0} + p$. If $\mathbf{x}_{0}$ is a strict local minimum of $f (\mathbf{x})$, then which one of the following statements is TRUE?
The matrix $\begin{bmatrix} 1 & a \\ 8 & 3 \end{bmatrix}$ (where $a > 0$) has a negative eigenvalue if $a$ is greater than
If the value of the double integral
$\int_{x=3}^{4} \int_{y=1}^{2} \frac{dydx}{(x + y)^2}$
is $\log_e(\frac{a}{24})$, then $a$ is __________ (answer in integer).
If $x(t)$ satisfies the differential equation
$t \frac{dx}{dt} + (t - x) = 0$
subject to the condition $x(1) = 0$, then the value of $x(2)$ is __________ (rounded off to 2 decimal places).