1
GATE ME 2024
MCQ (Single Correct Answer)
+1
-0.33

Consider the system of linear equations

x + 2y + z = 5

2x + ay + 4z = 12

2x + 4y + 6z = b

The values of a and b such that there exists a non-trivial null space and the system admits infinite solutions are

A

a = 8, b = 14

B

a = 4, b = 12

C

a = 8, b = 12

D

a = 4, b = 14

2
GATE ME 2024
MCQ (Single Correct Answer)
+1
-0.33

Let $f(.)$ be a twice differentiable function from $ \mathbb{R}^{2} \rightarrow \mathbb{R}$. If $P, \mathbf{x}_{0} \in \mathbb{R}^{2}$ where $\vert \vert P\vert \vert$ is sufficiently small (here $\vert \vert . \vert \vert$ is the Euclidean norm or distance function), then $f (\mathbf{x}_{0} + p) = f(\mathbf{x}_{0}) + \nabla f(\mathbf{x}_{0})^{T}p + \dfrac{1}{2} p^{T} \nabla^{2}f(\psi)p$ where $\psi \in \mathbb{R}^{2}$ is a point on the line segment joining $\mathbf{x}_{0}$ and $\mathbf{x}_{0} + p$. If $\mathbf{x}_{0}$ is a strict local minimum of $f (\mathbf{x})$, then which one of the following statements is TRUE?

A

$\nabla f(x_{0})^{T}p > 0\ \ and\ \ p^{T} \nabla^{2} f( \psi)p = 0$

B

$\nabla f(x_{0})^{T}p = 0\ and\ p^{T} \nabla^{2} f( \psi)p > 0$

C

$\nabla f(x_{0})^{T}p = 0\ and\ p^{T} \nabla^{2} f( \psi)p = 0$

D

$\nabla f(x_{0})^{T}p = 0\ and\ p^{T} \nabla^{2} f( \psi)p < 0$

3
GATE ME 2024
MCQ (Single Correct Answer)
+2
-1.33

The matrix $\begin{bmatrix} 1 & a \\ 8 & 3 \end{bmatrix}$ (where $a > 0$) has a negative eigenvalue if $a$ is greater than

A

$\frac{3}{8}$

B

$\frac{1}{8}$

C

$\frac{1}{4}$

D

$\frac{1}{5}$

4
GATE ME 2024
Numerical
+2
-0

If the value of the double integral

$\int_{x=3}^{4} \int_{y=1}^{2} \frac{dydx}{(x + y)^2}$

is $\log_e(\frac{a}{24})$, then $a$ is __________ (answer in integer).

Your input ____
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12