1
GATE ME 2022 Set 2
MCQ (Single Correct Answer)
+1
-0.33
Consider a cube of unit edge length and sides parallel to co-ordinate axes, with its centroid at the point (1, 2, 3). The surface integral $\int_A \vec{F}.d\vec{A}$ of a vector field $\vec{F}=3x\hat{i}+5y\hat{j}+6z\hat{k}$ over the entire surface A of the cube is ______.
A
14
B
27
C
28
D
31
2
GATE ME 2022 Set 2
MCQ (Single Correct Answer)
+1
-0.33

Consider the definite integral

$\int^2_1(4x^2+2x+6)dx$

Let Ie be the exact value of the integral. If the same integral is estimated using Simpson’s rule with 10 equal subintervals, the value is Is. The percentage error is defined as e = 100 × (Ie - Is)/Ie The value of e is

A
2.5
B
3.5
C
1.2
D
0
3
GATE ME 2022 Set 2
MCQ (Single Correct Answer)
+1
-0.33

Given $\int^{\infty}_{-\infty}e^{-x^2}dx=\sqrt{\pi}$

If a and b are positive integers, the value of $\int^{\infty}_{-\infty}e^{-a(x+b)^2}dx$ is _________.

A
$\sqrt{\pi a}$
B
$\sqrt{\frac{\pi}{a}} $
C
$b\sqrt{\pi a}$
D
$b\sqrt{\frac{\pi}{a}}$
4
GATE ME 2022 Set 2
MCQ (Single Correct Answer)
+1
-0.33
A polynomial ψ(s) = ansn + an-1sn-1 + ......+ a1s + a0 of degree n > 3 with constant real coefficients an, an-1, ... a0 has triple roots at s = -σ. Which one of the following conditions must be satisfied?
A
ψ(s) = 0 at all the three values of s satisfying s3 + σ3 = 0
B
ψ(s) = 0, $\frac{d\psi(s)}{ds}=0$ and $\frac{d^2\psi(s)}{ds^2}=0$ at s = -σ
C
ψ(s) = 0, $\frac{d^2\psi(s)}{ds^2}=0$ and $\frac{d^4\psi(s)}{ds^4}=0$ at s = -σ
D
ψ(s) = 0, $\frac{d^3\psi(s)}{ds^3}=0$  at s = -σ
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12