1
GATE ME 2022 Set 1
Numerical
+2
-0

Two rigid massless rods PR and RQ are joined at frictionless pin-joint R and are resting on ground at P and Q, respectively, as shown in the figure. A vertical force F acts on the pin R as shown. When the included angle 𝜃 < 90°, the rods remain in static equilibrium due to Coulomb friction between the rods and ground at locations P and Q. At 𝜃 = 90°, impending slip occurs simultaneously at points P and Q. Then the ratio of the coefficient of friction at Q to that at P (μQ /μP) is _________ (round off to two decimal places).

GATE ME 2022 Set 1 Engineering Mechanics - Engineering Mechanics Static and Dynamics Question 12 English
Your input ____
2
GATE ME 2022 Set 1
Numerical
+2
-0

A cylindrical disc of mass m = 1 kg and radius r = 0.15 m was spinning at 𝜔 = 5 rad/s when it was placed on a flat horizontal surface and released (refer to the figure). Gravity g acts vertically downwards as shown in the figure. The coefficient of friction between the disc and the surface is finite and positive. Disregarding any other dissipation except that due to friction between the disc and the surface, the horizontal velocity of the center of the disc, when it starts rolling without slipping, will be _________ m/s (round off to 2 decimal places).

GATE ME 2022 Set 1 Engineering Mechanics - Engineering Mechanics Static and Dynamics Question 11 English
Your input ____
3
GATE ME 2022 Set 1
MCQ (Single Correct Answer)
+1
-0.33
A tiny temperature probe is fully immersed in a flowing fluid and is moving with zero relative velocity with respect to the fluid. The velocity field in the fluid is $\vec V = (2x) \hat i + (y + 3t) \hat j,$ and the temperature field in the fluid is T = 2x2 + xy + 4t, where x and y are the spatial coordinates, and t is the time. The time rate of change of temperature recorded by the probe at (x = 1, y = 1, t = 1) is _______.
A
4
B
0
C
18
D
14
4
GATE ME 2022 Set 1
MCQ (Single Correct Answer)
+1
-0.33

In the following two-dimensional momentum equation for natural convection over a surface immersed in a quiescent fluid at temperature T (g is the gravitational acceleration, β is the volumetric thermal expansion coefficient, ν is the kinematic viscosity, u and v are the velocities in x and y directions, respectively, and T is the temperature)

$\rm u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = g β (T - T_∞) + \nu \frac{\partial^2 u}{\partial y^2} $

the term gβ(T - T) represent

A
Ratio of inertial force to viscous force
B
Ratio of buoyancy force to viscous force
C
Viscous force per unit mass
D
Buoyancy force per unit mass
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12