1
GATE ME 2022 Set 1
Numerical
+1
-0

Electrochemical machining operations are performed with tungsten as the tool, and copper and aluminum as two different workpiece materials. Properties of copper and aluminum are given in the table below.

$$ \begin{array}{|c|c|c|c|} \hline \text { Material } & \begin{array}{l} \text { Atomic mass } \\ \text { (amu) } \end{array} & \text { Valency } & \text { Density }\left(\mathrm{g} / \mathrm{cm}^3\right) \\ \hline \text { Copper } & 63 & 2 & 9 \\ \hline \text { Aluminum } & 27 & 3 & 2.7 \\ \hline \end{array} $$

Ignore overpotentials, and assume that current efficiency is 100% for both the
workpiece materials. Under identical conditions, if the material removal rate (MRR) of copper is 100 mg/s, the MRR of aluminum will be ________________ mg/s (round-off to two decimal places).

Your input ____
2
GATE ME 2022 Set 1
Numerical
+2
-0
Under orthogonal cutting condition, a turning operation is carried out on a metallic workpiece at a cutting speed of 4 m/s. The orthogonal rake angle of the cutting tool is 5º. The uncut chip thickness and width of cut are 0.2 mm and 3 mm, respectively. In this turning operation, the resulting friction angle and shear angle are 45º and 25º, respectively. If the dynamic yield shear strength of the workpiece material under this cutting condition is 1000 MPa, then the cutting force is _______ N (round off to one decimal place).
Your input ____
3
GATE ME 2022 Set 1
Numerical
+2
-0
A 1 mm thick cylindrical tube, 100 mm in diameter, is orthogonally turned such that the entire wall thickness of the tube is cut in a single pass. The axial feed of the tool is 1 m/minute and the specific cutting energy (u) of the tube material is 6 J/mm3. Neglect contribution of feed force towards power. The power required to carry out this operation is _________ kW (round off to one decimal place).
Your input ____
4
GATE ME 2022 Set 1
Numerical
+2
-0

A 4 mm thick aluminum sheet of width w = 100 mm is rolled in a two-roll mill of roll diameter 200 mm each. The workpiece is lubricated with a mineral oil, which gives a coefficient of friction, μ = 0.1. The flow stress (σ) of the material in MPa is σ = 207 + 414 𝜀, where 𝜀 is the true strain. Assuming rolling to be a plane strain deformation process, the roll separation force (F) for maximum permissible draft (thickness reduction) is _________ kN (round off to the nearest integer).

Use:

 $F = 1.15 \barσ \left( 1 + \frac{\mu L}{2 \bar h} \right)$ wL, where $\bar \sigma$ is average flow stress, L is roll-workpiece contact length, and $\bar h$ is the average sheet thickness

Your input ____
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12