1
GATE ME 2022 Set 1
MCQ (More than One Correct Answer)
+1
-0
The figure shows a purely convergent nozzle with a steady, inviscid compressible flow of an ideal gas with constant thermophysical properties operating under choked condition. The exit plane shown in the figure is located within the nozzle. If the inlet pressure (P0) is increased while keeping the back pressure (Pback) unchanged, which of the following statements is/are true?
2
GATE ME 2022 Set 1
MCQ (Single Correct Answer)
+2
-0.66
A solid spherical bead of lead (uniform density = 11000 kg/m3) of diameter d = 0.1 mm sinks with a constant velocity V in a large stagnant pool of a liquid (dynamic viscosity = 1.1 × 10-3 kg∙m-1∙s-1). The coefficient of drag is given by $\rm C_D = \frac{24}{Re} $, where the Reynolds number (Re) is defined on the basis of the diameter of the bead. The drag force acting on the bead is expressed as $\rm D = (C_D) (0.5 \rho V^2) \left( \frac{\pi d^2}{4} \right), $ where ρ is the density of the liquid. Neglect the buoyancy force. Using g = 10 m/s2, the velocity V is __________ m/s.
3
GATE ME 2022 Set 1
MCQ (Single Correct Answer)
+2
-0.66
Consider steady, one-dimensional compressible flow of a gas in a pipe of diameter 1 m. At one location in the pipe, the density and velocity are 1 kg/m3 and 100 m/s, respectively. At a downstream location in the pipe, the velocity is 170 m/s. If the pressure drop between these two locations is 10 kPa, the force exerted by the gas on the pipe between these two locations is _______ N.
4
GATE ME 2022 Set 1
Numerical
+2
-0
A steady two-dimensional flow field is specified by the stream function
ψ = kx3y,
where x and y are in meters and the constant k = 1 m-2s-1. The magnitude of acceleration at a point (x, y) = (1 m, 1 m) is ________ m/s2 (round off to 2 decimal places).
Your input ____
Paper analysis
Total Questions
Engineering Mathematics
9
Engineering Mechanics
4
Fluid Mechanics
6
Heat Transfer
4
Industrial Engineering
5
Machine Design
5
Production Engineering
7
Strength of Materials
4
Theory of Machines
5
Thermodynamics
6
General Aptitude
10
More papers of GATE ME
GATE ME 2024
GATE ME 2023
GATE ME 2022 Set 2
GATE ME 2022 Set 1
GATE ME 2020 Set 2
GATE ME 2020 Set 1
GATE ME 2019 Set 1
GATE ME 2019 Set 2
GATE ME 2018 Set 2
GATE ME 2018 Set 1
GATE ME 2017 Set 1
GATE ME 2017 Set 2
GATE ME 2016 Set 2
GATE ME 2016 Set 3
GATE ME 2016 Set 1
GATE ME 2015 Set 2
GATE ME 2015 Set 1
GATE ME 2015 Set 3
GATE ME 2014 Set 4
GATE ME 2014 Set 2
GATE ME 2014 Set 1
GATE ME 2014
GATE ME 2014 Set
GATE ME 2014 Set 3
GATE ME 2013
GATE ME 2012
GATE ME 2011
GATE ME 2010
GATE ME 2009
GATE ME 2008
GATE ME 2007
GATE ME 2006
GATE ME 2005
GATE ME 2004
GATE ME 2003
GATE ME 2002
GATE ME 2001
GATE ME 2000
GATE ME 1999
GATE ME 1998
GATE ME 1997
GATE ME 1996
GATE ME 1995
GATE ME 1994
GATE ME 1993
GATE ME 1992
GATE ME 1991
GATE ME 1990
GATE ME 1989
GATE ME 1988
GATE ME 1987
GATE ME
Papers
2024
2023
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
1990
1989
1988
1987