The system of linear equations in real (x, y) given by
$\rm \begin{pmatrix} \rm x & \rm y \end{pmatrix} \begin{bmatrix} 2 & 5- 2 α \\\ α & 1 \end{bmatrix} = \rm \begin{pmatrix} \rm 0 & \rm 0 \end{pmatrix} $
involves a real parameter α and has infinitely many non-trivial solutions for special value(s) of α. Which one or more among the following options is/are non-trivial solution(s) of (x, y) for such special value(s) of α ?
Let a random variable X follow Poisson distribution such that
Prob(X = 1) = Prob(X = 2).
The value of Prob(X = 3) is __________ (round off to 2 decimal places).
Consider two vectors
$\rm \vec a = 5 i + 7 j + 2 k $
$\rm \vec b = 3i - j + 6k$
Magnitude of the component of $\vec a$ orthogonal to $\vec b$ in the plane containing the vectors $\vec a$ and $\vec{\bar b}$ is ______ (round off to 2 decimal places).
The plane of the figure represents a horizontal plane. A thin rigid rod at rest is pivoted without friction about a fixed vertical axis passing through O. Its mass moment of inertia is equal to 0.1 kg∙cm2 about O. A point mass of 0.001 kg hits it normally at 200 cm/s at the location shown, and sticks to it. Immediately after the impact, the angular velocity of the rod is ___________ rad/s (in integer).