1
GATE ME 2009
MCQ (Single Correct Answer)
+2
-0.6
Consider steady, incompressible and irrotational flow through a reducer in a horizontal pipe where the diameter is reduced from $$20cm$$ to $$10cm.$$ The pressure in the $$20cm$$ pipe just upstream of the reducer is $$150kPa.$$ The fluid has a vapour pressure of $$50kPa$$ and a specific weight of $$5\,\,kN/{m^3}.$$ Neglecting frictional effects, the maximum discharge (in $${m^3}/s$$) that can pass through the reducer without causing cavitation is
A
$$0.05$$
B
$$0.16$$
C
$$0.27$$
D
$$0.38$$
2
GATE ME 2009
MCQ (Single Correct Answer)
+1
-0.3
The velocity profile of a fully developed laminar flow in a straight circular pipe, as shown in the figure, is given by the expression. $$$u\left( r \right) = {{ - {R^2}} \over {4\mu }}\left( {{{dp} \over {dx}}} \right)\left( {1 - {{{r^2}} \over {{R^2}}}} \right)$$$
Where $${{dp} \over {dx}}$$ is a constant.

GATE ME 2009 Fluid Mechanics - Laminar Flow Question 20 English

The average velocity of fluid in the pipe is

A
$${{ - {R^2}} \over {8\mu }}\left( {{{dp} \over {dx}}} \right)$$
B
$${{ - {R^2}} \over {4\mu }}\left( {{{dp} \over {dx}}} \right)$$
C
$${{ - {R^2}} \over {2\mu }}\left( {{{dp} \over {dx}}} \right)$$
D
$${{ - {R^2}} \over \mu }\left( {{{dp} \over {dx}}} \right)$$
3
GATE ME 2009
MCQ (Single Correct Answer)
+2
-0.6
Consider steady-state heat conduction across the thickness in a plane composite wall as shown in fig exposed to convection conditions on both sides. GATE ME 2009 Heat Transfer - Conduction Question 21 English 1 GATE ME 2009 Heat Transfer - Conduction Question 21 English 2

Assuming negligible contact resistance between the wall surfaces, the interface temp $$T(C)$$ of the two walls will be

A
$$-0.50$$
B
$$2.75$$
C
$$3.75$$
D
$$4.5$$
4
GATE ME 2009
MCQ (Single Correct Answer)
+1
-0.3
A coolant fluid at $${30^ \circ }C$$ flows over a heated flat plate maintained at a constant temperature of $${100^ \circ }C$$. The boundary layer temp distribution at a given location on the plate may be approximated as $$T=30+70exp(-y),$$ where $$y$$ (in $$m$$) is the distance normal to the plate and $$T$$ is in $$^ \circ C.$$ If thermal conductivity of the fluid is $$1.0W/mk,$$ the local convective heat transfer (in $$W/{m^2}K$$) at that location will be
A
$$0.2$$
B
$$1$$
C
$$5$$
D
$$10$$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12