1
GATE ME 2009
MCQ (Single Correct Answer)
+1
-0.3
A block weighing 981 $$N$$ is resting on a horizontal surface. The coefficient of friction between the block and the horizontal surface is $$\mu = 0.2.$$ A vertical cable attached to the block provides partial support as shown. A man can pull horizontally with a force of 100 $$N$$. What will be the tension, $$T$$ (inN) in the cable if the man is just able to move the block to the right?
2
GATE ME 2009
MCQ (Single Correct Answer)
+2
-0.6
Water at $${25^0}C$$ is flowing through a $$1.0km$$ long $$G.I.$$ pipe of $$200mm$$ diameter at the rate of $$0.07$$ $${m^3}/s.$$ If value of Darcy friction factor for this pipe is $$0.02$$ and density of water is $$1000\,\,kg/{m^3}$$, the pumping power (in $$kW$$) required to maintain the flow is
3
GATE ME 2009
MCQ (Single Correct Answer)
+2
-0.6
You are asked to evaluate assorted fluid flows for their suitability in a given laboratory application. The following three flow choices. Expressed in terms of the two - dimensional velocity fields in the $$x-$$ $$y$$ plane, are made available.
$$P:$$ $$u = 2y,\,\,\,v = - 3x$$
$$Q:$$ $$u=3xy,$$ $$\,\,\,\,$$$$v=0$$
$$R:$$ $$u=-2x,$$ $$\,\,\,\,$$$$v=2y$$
$$P:$$ $$u = 2y,\,\,\,v = - 3x$$
$$Q:$$ $$u=3xy,$$ $$\,\,\,\,$$$$v=0$$
$$R:$$ $$u=-2x,$$ $$\,\,\,\,$$$$v=2y$$
Which flows should be recommended when the application requires the flow to be incompressible and irrotational?
4
GATE ME 2009
MCQ (Single Correct Answer)
+2
-0.6
Consider steady, incompressible and irrotational flow through a reducer in a horizontal pipe where the diameter is reduced from $$20cm$$ to $$10cm.$$ The pressure in the $$20cm$$ pipe just upstream of the reducer is $$150kPa.$$ The fluid has a vapour pressure of $$50kPa$$ and a specific weight of $$5\,\,kN/{m^3}.$$ Neglecting frictional effects, the maximum discharge (in $${m^3}/s$$) that can pass through the reducer without causing cavitation is
Paper analysis
Total Questions
Engineering Mathematics
9
Engineering Mechanics
2
Fluid Mechanics
4
Heat Transfer
5
Industrial Engineering
7
Machine Design
3
Production Engineering
8
Strength of Materials
6
Theory of Machines
6
Thermodynamics
5
More papers of GATE ME
GATE ME 2024
GATE ME 2023
GATE ME 2022 Set 2
GATE ME 2022 Set 1
GATE ME 2020 Set 2
GATE ME 2020 Set 1
GATE ME 2019 Set 1
GATE ME 2019 Set 2
GATE ME 2018 Set 2
GATE ME 2018 Set 1
GATE ME 2017 Set 2
GATE ME 2017 Set 1
GATE ME 2016 Set 2
GATE ME 2016 Set 3
GATE ME 2016 Set 1
GATE ME 2015 Set 3
GATE ME 2015 Set 2
GATE ME 2015 Set 1
GATE ME 2014 Set
GATE ME 2014 Set 4
GATE ME 2014 Set 2
GATE ME 2014 Set 3
GATE ME 2014 Set 1
GATE ME 2014
GATE ME 2013
GATE ME 2012
GATE ME 2011
GATE ME 2010
GATE ME 2009
GATE ME 2008
GATE ME 2007
GATE ME 2006
GATE ME 2005
GATE ME 2004
GATE ME 2003
GATE ME 2002
GATE ME 2001
GATE ME 2000
GATE ME 1999
GATE ME 1998
GATE ME 1997
GATE ME 1996
GATE ME 1995
GATE ME 1994
GATE ME 1993
GATE ME 1992
GATE ME 1991
GATE ME 1990
GATE ME 1989
GATE ME 1988
GATE ME 1987
GATE ME
Papers
2024
2023
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
1990
1989
1988
1987