1
GATE ME 2008
MCQ (Single Correct Answer)
+2
-0.6
Consider the Linear programme $$(LP)$$
Max $$4x$$ + $$6y$$
Subject to
$$\eqalign{ & \,\,\,\,\,\,\,\,\,\,\,3x + 2y \le 6 \cr & \,\,\,\,\,\,\,\,\,\,\,2x + 3y \le 6 \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x,y \ge 0 \cr} $$

The dual for the $$LP$$ is

A
$$\eqalign{ & {Z_{\min }} = 6u + 6v \cr & \,\,subjuect\,\,to\,\, \cr & 3u + 2v \ge 4 \cr & 2u + 3v \ge 6 \cr & u,v \ge 0 \cr} $$
B
$$\eqalign{ & {Z_{\max }} = 6u + 6v \cr & \,\,subjuect\,\,to\,\, \cr & 3u + 2v \le 4 \cr & 2u + 3v \le 6 \cr & u,v \ge 0 \cr} $$
C
$$\eqalign{ & {Z_{\max }} = 4u + 6v \cr & \,\,subjuect\,\,to\,\, \cr & 3u + 2v \ge 6 \cr & 2u + 3v \ge 6 \cr & u,v \ge 0 \cr} $$
D
$$\eqalign{ & {Z_{\max }} = 4u + 6v \cr & \,\,subjuect\,\,to\,\, \cr & 3u + 2v \le 6 \cr & 2u + 3v \le 6 \cr & u,v \ge 0 \cr} $$
2
GATE ME 2008
MCQ (Single Correct Answer)
+2
-0.6
Consider the Linear programme $$(LP)$$
Max $$4x$$ + $$6y$$
Subject to
$$\eqalign{ & \,\,\,\,\,\,\,\,\,\,\,3x + 2y \le 6 \cr & \,\,\,\,\,\,\,\,\,\,\,2x + 3y \le 6 \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x,y \ge 0 \cr} $$

After introducing slack variables $$s$$ and $$t$$, the initial basic feasible solution is represented by the table below (basic variables are $$s=6$$ $$t=6,$$ and the objective function value is $$0$$).
GATE ME 2008 Industrial Engineering - Linear Programming Question 14 English 1

After some simplex iterations, the following table is obtained
GATE ME 2008 Industrial Engineering - Linear Programming Question 14 English 2
From this, one can conclude that

A
The $$LP$$ has a unique optimal solution
B
The $$LP$$ has an optimal solution that is not unique
C
The $$LP$$ is infeasible
D
The $$LP$$ is unbounded
3
GATE ME 2008
MCQ (Single Correct Answer)
+2
-0.6
For the standard transportation linear programme with $$m$$ sources and $$n$$ destinations and total supply equaling total demand, an optimal solution (lowest cost) with the smallest number of non-zero $${X_{ij}}$$ values (amounts from source $$i$$ to destination $$j$$) is desired. The best upper bound for this number is
A
$$mn$$
B
$$2(m+n)$$
C
$$m+n$$
D
$$m+n-1$$
4
GATE ME 2008
MCQ (Single Correct Answer)
+2
-0.6
A set of $$5$$ jobs is to be processed on a single machine. The processing time (in days) is given in the table below. The holding cost for each job is Rs. $$K$$ per day. GATE ME 2008 Industrial Engineering - Scheduling Question 8 English

A schedule that minimizes the total inventory cost is

A
$$T - S - Q - R - P$$
B
$$P - R - S - Q - T$$
C
$$T - R - S - Q - P$$
D
$$P - Q - R - S - T$$
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
CBSE
Class 12