1
GATE ME 2003
MCQ (Single Correct Answer)
+2
-0.6
Air flows through a venture and into atmosphere. Air density is $$\rho $$; atmospheric pressure is $$'\,{P_a}';$$ throat diameter is exit diameter is $$'{D_t}';$$ and exit velocity is $$U.$$ the throat is connected to a cylinder containing a frictionless piston attached to a spring. The spring constant is $$'k'.$$ the bottom surface of the piston is exposed to atmosphere. Due to the flow, the piston moves by distance $$x.$$ assuming incompressible frictionless flow, $$x$$ is GATE ME 2003 Fluid Mechanics - Fluid Dynamics Question 41 English
A
$$\left( {\rho {U^2}/2k} \right)\pi {D_s}^2$$
B
$$\left( {\rho {U^2}/8k} \right)\left( {{{{D^2}} \over {{D_t}^2}} - 1} \right)\pi {D_s}^2$$
C
$$\left( {\rho {U^2}/2k} \right)\left( {{{{D^2}} \over {{D_t}^2}} - 1} \right)\pi {D_s}^2$$
D
$$\left( {\rho {U^2}/8k} \right)\left( {{{{D^4}} \over {{D_t}^4}} - 1} \right)\pi {D_s}^2$$
2
GATE ME 2003
MCQ (Single Correct Answer)
+2
-0.6
A water container is kept on a weighing balance. Water from a tap is falling vertically into the container with a volume flow rate of $$'Q'$$; the velocity of the water when it hits the water surface is $$'U'$$. At a particular instant of time the total mass of the container and water is $$'m'.$$ The force registered by the weighing balance at this instant of time is
A
$$mg + \rho \,QU$$
B
$$mg + 2\,\rho \,QU$$
C
$$mg + \,\rho \,Q{U^2}/2$$
D
$$\rho \,Q{U^2}/2$$
3
GATE ME 2003
MCQ (Single Correct Answer)
+2
-0.6
A syringe with a frictionless plunger contains water and has at its end a $$100$$ $$mm$$ long needle of $$1$$ $$mm$$ diameter. The internal diameter of the syringe is $$10$$ $$mm.$$ Water density is $$1000\,\,kg/{m^3}.$$ . The plunger is pushed in at $$10$$ $$mm/s$$ and the water comes out as a jet. GATE ME 2003 Fluid Mechanics - Turbulent Flow Question 7 English

Assuming ideal flow, the force $$F$$ in Newton’s required on the plunger to push out the water is

A
$$0$$
B
$$0.04$$
C
$$0.13$$
D
$$1.15$$
4
GATE ME 2003
MCQ (Single Correct Answer)
+2
-0.6
A syringe with a frictionless plunger contains water and has at its end a $$100$$ $$mm$$ long needle of $$1$$ $$mm$$ diameter. The internal diameter of the syringe is $$10$$ $$mm.$$ Water density is $$1000\,\,kg/{m^3}.$$ . The plunger is pushed in at $$10$$ $$mm/s$$ and the water comes out as a jet. GATE ME 2003 Fluid Mechanics - Turbulent Flow Question 6 English

Neglect losses in the cylinder and assume fully developed laminar viscous flow throughout the needle; the Darcy friction factor is $${64/R_e}$$. Where $${R_e}$$ is the Reynolds number. Given that the viscosity of water is $$1.0 \times {10^{ - 3}}\,\,kg/m\,\,\,s,$$ the force $$F$$ in newtons required on the plunger is

A
$$0.13$$
B
$$0.16$$
C
$$0.3$$
D
$$4.4$$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12