1
GATE EE 2023
Numerical
+2
-0.67

The Zener diode in circuit has a breakdown voltage of 5 V. The current gain $$\beta$$ of the transistor in the active region in 99. Ignore base-emitter voltage drop $$V_{BE}$$. The current through the 20 $$\Omega$$ resistance in milliamperes is ___________ (Round off to 2 decimal places).

GATE EE 2023 Analog Electronics - Diode Circuits and Applications Question 2 English

Your input ____
2
GATE EE 2023
MCQ (Single Correct Answer)
+1
-0.33

For the block diagram shown in the figure, the transfer function $${{Y(s)} \over {R(s)}}$$ is

GATE EE 2023 Control Systems - Block Diagram and Signal Flow Graph Question 2 English

A
$${{2s + 3} \over {s + 1}}$$
B
$${{3x + 2} \over {s - 1}}$$
C
$${{s + 1} \over {3s + 2}}$$
D
$${{3s + 2} \over {s + 1}}$$
3
GATE EE 2023
MCQ (Single Correct Answer)
+1
-0.33

In the Nyquist plot of the open-loop transfer function

$$G(s)H(s) = {{3s + 5} \over {s - 1}}$$

corresponding to the feedback loop shown in the figure, the infinite semi-circular arc of the Nyquist contour in s-plane is mapped into a point at

GATE EE 2023 Control Systems - Polar Nyquist and Bode Plot Question 5 English

A
$$G(s)H(s) = \infty $$
B
$$G(s)H(s) = 0$$
C
$$G(s)H(s) = 3$$
D
$$G(s)H(s) = - 5$$
4
GATE EE 2023
MCQ (Single Correct Answer)
+1
-0.33

Consider a unity-gain negative feedback system consisting of the plant G(s) (given below) and a proportional-integral controller. Let the proportional gain and integral gain be 3 and 1, respectively. For a unit step reference input, the final values of the controller output and the plant output, respectively, are

$$G(s) = {1 \over {s - 1}}$$

A
$$\infty,\infty$$
B
$$1,0$$
C
$$1,-1$$
D
$$-1,1$$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12