1
GATE EE 2023
MCQ (More than One Correct Answer)
+1
-0.33

The bus admittance ($$Y_{bus}$$) matrix of a 3-bus power system is given below.

$$\quad\quad$$$$\matrix{ 1 & \quad\quad\quad2\quad\quad & 3 \cr } $$

$$\matrix{ 1 \cr 2 \cr 3 \cr } \left[ {\matrix{ { - j15} & {j10} & {j5} \cr {j10} & { - j13.5} & {j4} \cr {j5} & {j4} & { - j8} \cr } } \right]$$

Considering that there is no shunt inductor connected to any of the buses, which of the following can NOT be true?

A
Line charging capacitor of finite value is present in all three lines
B
Line charging capacitor of finite value is present in line 2-3 only
C
Line charging capacitor of finite value is present in line 2-3 only and shunt capacitor of finite value is present in bus 1 only
D
Line charging capacitor of finite value is present in line 2-3 only and shunt capacitor of finite value is present in bus 3 only
2
GATE EE 2023
Numerical
+1
-0.33

A 50 Hz, 275 kV line of length 400 km has the following parameters:

Resistance, R = 0.035 $$\Omega$$/km;

Inductance, L = 1 mH/km;

Capacitance, C = 0.01 $$\mu$$F/km;

The line is represented by the nominal-$$\pi$$ model. With the magnitudes of the sending end and the receiving end voltages of the line (denoted by $$V_S$$ and $$V_R$$, respectively) maintained at 275 kV, the phase angle difference ($$\theta$$) between $$V_S$$ and $$V_R$$ required for maximum possible active power to be delivered to the receiving end, in degree is ___________ (Round off to 2 decimal places).

Your input ____
3
GATE EE 2023
MCQ (Single Correct Answer)
+2
-0.67

The three-bus power system shown in the figure has one alternator connected to bus 2 which supplies 200 MW and 40 MVAr power. Bus 3 is infinite bus having a voltage of magnitude $$|{V_3}| = 1.0$$ p.u. and angle of $$-15^\circ$$. A variable current source, $$|I|\angle \phi $$ is connected at bus 1 and controlled such that the magnitude of the bus 1 voltage is maintained at 1.05 p.u. and the phase angle of the source current, $$\phi = {\theta _1} \pm {\pi \over 2}$$, where $$\theta_1$$ is the phase angle of the bus 1 voltage. The three buses can be categorized for load flow analysis as

GATE EE 2023 Power System Analysis - Per Unit System Question 2 English

A

$$Bus~1~~Slack~bus$$

$$Bus~2~~P-|V|~bus$$

$$Bus~3~~P-Q~bus$$

B

$$Bus~1~~P-|V|~bus$$

$$Bus~2~~P-|V|~bus$$

$$Bus~3~~Slack~bus$$

C

$$Bus~1~~P-Q~bus$$

$$Bus~2~~P-Q~bus$$

$$Bus~3~~Slack~bus$$

D

$$Bus~1~~P-|V|~bus$$

$$Bus~2~~P-Q~bus$$

$$Bus~3~~Slack~bus$$

4
GATE EE 2023
Numerical
+2
-0.67

The two-bus power system shown in figure (i) has one alternator supplying a synchronous motor load through a Y-$$\Delta$$ transformer. The positive, negative and zero-sequence diagrams of the system are shown in figures (ii), (iii) and (iv), respectively. All reactances in the sequence diagrams are in p.u. For a bolted line-to-line fault (fault impedance = zero) between phases 'b' and 'c' at bus 1, neglecting all pre-fault currents, the magnitude of the fault current (from phase 'b' to 'c') in p.u. is ____________ (Round off to 2 decimal places).

GATE EE 2023 Power System Analysis - Symmetrical Components and Symmetrical and Unsymmetrical Faults Question 1 English 1GATE EE 2023 Power System Analysis - Symmetrical Components and Symmetrical and Unsymmetrical Faults Question 1 English 2GATE EE 2023 Power System Analysis - Symmetrical Components and Symmetrical and Unsymmetrical Faults Question 1 English 3

Your input ____
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12