1
GATE EE 2023
MCQ (More than One Correct Answer)
+1
-0

The bus admittance ($$Y_{bus}$$) matrix of a 3-bus power system is given below.

$$\quad\quad$$$$\matrix{ 1 & \quad\quad\quad2\quad\quad & 3 \cr } $$

$$\matrix{ 1 \cr 2 \cr 3 \cr } \left[ {\matrix{ { - j15} & {j10} & {j5} \cr {j10} & { - j13.5} & {j4} \cr {j5} & {j4} & { - j8} \cr } } \right]$$

Considering that there is no shunt inductor connected to any of the buses, which of the following can NOT be true?

A
Line charging capacitor of finite value is present in all three lines
B
Line charging capacitor of finite value is present in line 2-3 only
C
Line charging capacitor of finite value is present in line 2-3 only and shunt capacitor of finite value is present in bus 1 only
D
Line charging capacitor of finite value is present in line 2-3 only and shunt capacitor of finite value is present in bus 3 only
2
GATE EE 2023
Numerical
+1
-0

A 50 Hz, 275 kV line of length 400 km has the following parameters:

Resistance, R = 0.035 $$\Omega$$/km;

Inductance, L = 1 mH/km;

Capacitance, C = 0.01 $$\mu$$F/km;

The line is represented by the nominal-$$\pi$$ model. With the magnitudes of the sending end and the receiving end voltages of the line (denoted by $$V_S$$ and $$V_R$$, respectively) maintained at 275 kV, the phase angle difference ($$\theta$$) between $$V_S$$ and $$V_R$$ required for maximum possible active power to be delivered to the receiving end, in degree is ___________ (Round off to 2 decimal places).

Your input ____
3
GATE EE 2023
MCQ (Single Correct Answer)
+2
-0.67

The three-bus power system shown in the figure has one alternator connected to bus 2 which supplies 200 MW and 40 MVAr power. Bus 3 is infinite bus having a voltage of magnitude $$|{V_3}| = 1.0$$ p.u. and angle of $$-15^\circ$$. A variable current source, $$|I|\angle \phi $$ is connected at bus 1 and controlled such that the magnitude of the bus 1 voltage is maintained at 1.05 p.u. and the phase angle of the source current, $$\phi = {\theta _1} \pm {\pi \over 2}$$, where $$\theta_1$$ is the phase angle of the bus 1 voltage. The three buses can be categorized for load flow analysis as

GATE EE 2023 Power System Analysis - Per Unit System Question 2 English

A

$$Bus~1~~Slack~bus$$

$$Bus~2~~P-|V|~bus$$

$$Bus~3~~P-Q~bus$$

B

$$Bus~1~~P-|V|~bus$$

$$Bus~2~~P-|V|~bus$$

$$Bus~3~~Slack~bus$$

C

$$Bus~1~~P-Q~bus$$

$$Bus~2~~P-Q~bus$$

$$Bus~3~~Slack~bus$$

D

$$Bus~1~~P-|V|~bus$$

$$Bus~2~~P-Q~bus$$

$$Bus~3~~Slack~bus$$

4
GATE EE 2023
Numerical
+2
-0

The two-bus power system shown in figure (i) has one alternator supplying a synchronous motor load through a Y-$$\Delta$$ transformer. The positive, negative and zero-sequence diagrams of the system are shown in figures (ii), (iii) and (iv), respectively. All reactances in the sequence diagrams are in p.u. For a bolted line-to-line fault (fault impedance = zero) between phases 'b' and 'c' at bus 1, neglecting all pre-fault currents, the magnitude of the fault current (from phase 'b' to 'c') in p.u. is ____________ (Round off to 2 decimal places).

GATE EE 2023 Power System Analysis - Symmetrical Components and Symmetrical and Unsymmetrical Faults Question 2 English 1GATE EE 2023 Power System Analysis - Symmetrical Components and Symmetrical and Unsymmetrical Faults Question 2 English 2GATE EE 2023 Power System Analysis - Symmetrical Components and Symmetrical and Unsymmetrical Faults Question 2 English 3

Your input ____
EXAM MAP