A three-phase synchronous motor with synchronous impedance of 0.1+j0.3 per unit per phase has a static stability limit of 2.5 per unit. The corresponding excitation voltage in per unit is _________ (Round off to 2 decimal places).
A three phase 415 V, 50 Hz, 6-pole, 960 RPM, 4 HP squirrel cage induction motor drives a constant torque load at rated speed operating from rated supply and delivering rated output. If the supply voltage and frequency are reduced by 20%, the resultant speed of the motor in RPM (neglecting the stator leakage impedance and rotational losses) is ___________ (Round off to the nearest integer).
When the winding c-d of the single-phase, 50 Hz, two winding transformer is supplied from an AC current source of frequency 50 Hz, the rated voltage of 200 V (rms), 50 Hz is obtained at the open-circuited terminals a-b. The cross sectional area of the core is 5000 mm$$^2$$ and the average core length traversed by the mutual flux is 500 mm. The maximum allowable flux density in the core is $$B_{max} = 1$$ Wb/m$$^2$$ and the relative permeability of the core material is 5000. The leakage impedance of the winding a-b and winding c-d at 50 Hz are (5 + j100$$\pi$$ $$\times$$ 0.16) $$\Omega$$ and (11.25 + j100$$\pi$$ $$\times$$ 0.36) $$\Omega$$, respectively. Considering the magnetizing characteristics to be linear and neglecting core loss, the self-inductance of the winding a-b in millihenry is ___________ (Round off to 1 decimal place).
In the figure, the electric field E and the magnetic field B point to x and z directions, respectively, and have constant magnitudes. A positive charge 'q' is released from rest at the origin. Which of the following statement(s) is/are true.