1
GATE CSE 2018
MCQ (Single Correct Answer)
+2
-0.6
Consider the first-order logic sentence
$$\varphi \equiv \,\,\,\,\,\,\,\exists s\exists t\exists u\forall v\forall w$$ $$\forall x\forall y\psi \left( {s,t,u,v,w,x,y} \right)$$
where $$\psi $$ $$(๐‘ ,๐‘ก, ๐‘ข, ๐‘ฃ, ๐‘ค, ๐‘ฅ, ๐‘ฆ)$$ is a quantifier-free first-order logic formula using only predicate symbols, and possibly equality, but no function symbols. Suppose $$\varphi $$ has a model with a universe containing $$7$$ elements.

Which one of the following statements is necessarily true?

A
There exists at least one model of $$\varphi $$ with universe of size less than or equal to $$3.$$
B
There exists no model of $$\varphi $$ with universe of size less than or equal to $$3.$$
C
There exists no model of $$\varphi $$ with universe of size greater than $$7.$$
D
Every model of $$\varphi $$ has a universe of size equal to $$7.$$
2
GATE CSE 2018
Numerical
+2
-0
Consider Guwahati $$(G)$$ and Delhi $$(D)$$ whose temperatures can be classified as high $$(H),$$ medium $$(M)$$ and low $$(L).$$ Let $$P\left( {{H_G}} \right)$$ denote the probability that Guwahati has high temperature. Similarly, $$P\left( {{M_G}} \right)$$ and $$P\left( {{L_G}} \right)$$ denotes the probability of Guwahati having medium and low temperatures respectively. Similarly, we use $$P\left( {{H_D}} \right),$$ $$P\left( {{M_D}} \right)$$ and $$P\left( {{L_D}} \right)$$ for Delhi.

The following table gives the conditional probabilities for Delhiโ€™s temperature given Guwahatiโ€™s temperature.

HD MD LD
HG 0.40 0.48 0.12
MG 0.10 0.65 0.25
LG 0.01 0.50 0.49

Consider the first row in the table above. The first entry denotes that if Guwahati has high temperature $$\left( {{H_G}} \right)$$ then the probability of Delhi also having a high temperature $$\left( {{H_D}} \right)$$ is $$0.40;$$ i.e., $$P\left( {{H_D}|{H_G}} \right) = 0.40.$$ Similarly, the next two entries are $$P\left( {{M_D}|{H_G}} \right) = 0.48$$ and $$P\left( {{L_D}|{H_G}} \right) = 0.12.$$ Similarly for the other rows.

If it is known that $$P\left( {{H_G}} \right) = 0.2,\,\,$$ $$P\left( {{M_G}} \right) = 0.5,\,\,$$ and $$P\left( {{L_G}} \right) = 0.3,\,\,$$ then the probability (correct to two decimal places) that Guwahati has high temperature given that Delhi has high temperature is __________.

Your input ____
3
GATE CSE 2018
MCQ (Single Correct Answer)
+2
-0.6
Which one of the following is a closed form expression for the generating function of the sequence $$\left\{ {{a_n}} \right\},$$ where $${a_n} = 2n + 3$$ for all $$n = 0,1,2,....?$$
A
$${3 \over {{{\left( {1 - x} \right)}^2}}}$$
B
$${{3x} \over {{{\left( {1 - x} \right)}^2}}}$$
C
$${\left( {1 - x} \right)}$$
D
$${{3 - x} \over {{{\left( {1 - x} \right)}^2}}}$$
4
GATE CSE 2018
Numerical
+2
-0
Two people, $$P$$ and $$Q,$$ decide to independently roll two identical dice, each with $$6$$ faces, numbered $$1$$ to $$6.$$ The person with the lower number wins. In case of a tie, they roll the dice repeatedly until there is no tie. Define a trial as a throw of the dice by $$P$$ and $$Q.$$ Assume that all $$6$$ numbers on each dice are equi-probable and that all trials are independent. The probability (rounded to $$3$$ decimal places) that one of them wins on the third trial is _____.
Your input ____
EXAM MAP